共查询到14条相似文献,搜索用时 62 毫秒
1.
提出一种基于专家PID和模糊控制的双闭环深度控制方法,用于实现胸鳍摆动推进模式机器鱼的定深控制.通过控制机器鱼的尾舵摆动角度,可以使机器鱼产生一定的俯仰力矩,从而改变机器鱼的俯仰姿态,实现上浮或下潜运动.给出了机器鱼的相关定深实验,并分析了不同目标深度下俯仰角度初始变化范围存在差异的原因.实验结果表明:本文提出的定深控制方法能够使机器鱼比较准确地稳定在目标深度,以及能够改善机器鱼到达目标深度后稳态游动时的俯仰稳定性,能够较好地实现机器鱼的深度控制. 相似文献
2.
胸鳍摆动推进机器鱼滚转机动控制 总被引:1,自引:0,他引:1
针对胸鳍摆动推进机器鱼滚转机动控制研究的实际需求,提出了一种基于中枢模式发生器(CPG)的模糊控制方法.通过模仿生物原型的胸鳍摆动规律,得到一种可以驱动机器鱼滚转运动的胸鳍摆动方式,并通过定义相关参数将其量化表达.基于胸鳍摆动CPG模型,建立模糊控制器,用于机器鱼的滚转机动控制.进行了机器鱼的滚转运动实验并对实验结果进行了详细分析.实验结果表明,机器鱼能以最快10(°)/s的角速度达到目标滚转角度,而且稳态误差不超过±5°.通过滚转机动控制,并配合航向控制,实现了胸鳍摆动推进的机器鱼以90°滚转角穿越宽度为翼展1/2的狭窄空间的高机动性运动. 相似文献
3.
两关节尾鳍拍动控制是一个在高速、大载荷下的运动控制问题,它要求同时保证速度和位置波形失真都比较小.论证了尾鳍拍动推进方式与鱼体波动推进方式的一致性,根据尾鳍拍动的运动规律导出了用于拍动控制的数学模型.基于SPC-III机器鱼硬件平台,在主臂控制上,提出了根据摆角位置解算转速,并结合时间与摆角位置关系进行速度补偿的算法;在小臂控制上,提出了根据两关节摆角位置的关系及程序循环周期解算小臂目标位置的跟随算法.对高频拍动的实现进行了探讨.在试验中对尾鳍拍动的跟随性进行了验证. 相似文献
对由离子聚合物金属复合材料(IPMC,Ionic Polymer-Metal Composite)智能材料驱动的仿生机器鱼的推进效率开展了实验研究.为了测量机器鱼的推进性能,使用了一种新型的实验设备完成流体动力学实验.在伺服拖拽系统下,IPMC机器鱼在一个外力为零的环境下自推进前进.通过实验测得在IPMC驱动频率为1 Hz时有最佳的推进效率2.3×10-3,在1.2 Hz时有最大的推进力0.025 3 N,在1.5 Hz时有最大速度0.021 m/s,同时在2.6 Hz时有最大输出功率0.36 W.实验结果表明,在使机器鱼获得最佳推进效率的最优驱动频率下,机器鱼也能获得较高的推进速度.该推进效率测量方法同样可以应用在研究其他基于智能材料的水下机器人运动实验研究中. 相似文献
5.
仿生扑翼机构的设计以实现昆虫的扑翼形式为目标,通过仿生学与工程实际相结合,将昆虫复杂的扑翼运动分解为平扇与翻转两个基本动作,同时这两个自由度必须协调运动.仿生扑翼机构主要包括并联的两组曲柄摇杆机构与差动轮系两个部分,由直流伺服电机作为驱动,将曲柄的连续旋转输入转换为翅膀的平扇与翻转两自由度复合运动输出.通过建立运动模型对仿生扑翼机构进行运动学分析,得到扑翼的扇翅角及翅攻角与时间的关系曲线,然后选择合理的扑翼机构几何参数及齿轮副的传动比构筑扑翼机构样机,实现了预期的扑翼形式. 相似文献
6.
SPC3-UUV机器鱼是在北航SPC-2仿生机器鱼UUV平台基础上经过优化改进,为提高推进效率和续航力专门研制的水下仿生航行器实验平台.通过在泳池静水中对平台的摄像机测速观测实验和功率数据采集计算机的记录,得到SPC3-UUV速度-频率,功率-频率特性曲线,由航程估算,得到该平台在不同的拍动频率下续航时间以及估算航程,同时以平台速度和续航能力为评价原则选择了长航程实验的推进频率,范围定为1.5~1.6Hz,并在北戴河长航程实验中得到了验证.SPC-3 UUV航程达到22.761km,续航时间6.25h,平均航速1.03m/s. 相似文献
7.
由于蝴蝶形态学上的特点(翼面宽大,展弦比小,翼型复杂)以及其特殊的飞行方式(拍动频率低,翅膀几乎垂直于身体拍动;翅膀没有翻转运动,但在翅膀拍动时身体有明显的俯仰运动和振动),蝴蝶成为探索昆虫飞行高升力机理的特殊研究对象.为了深入研究蝴蝶悬停飞行时的流场和高升力机理,设计制作一套模拟蝴蝶悬停飞行的流体力学实验模型显得尤为重要.介绍一种新设计的电控蝴蝶实验模型,该模型与真实的蝴蝶一样,包含左右翅膀和身体,并且可以实现精确定位和模拟蝴蝶不同的运动模式,包括翅膀的拍动、身体的俯仰运动和振动.研究小组应用此实验模型进行流动显示实验和PIV(Particle Image Velocimetry)实验,对蝴蝶的悬停飞行进行研究. 相似文献