首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present numerical results showing the effect of neutral hydrogen atoms on the solar wind (SW) interaction with the local interstellar medium (LISM), where the interstellar magnetic field (ISMF) is coupled to the interplanetary magnetic field (IMF) at the surface of the heliopause. The IMF on the inner boundary surrounding the Sun is specified in the form of a Parker spiral and self-consistently develops in accordance with the SW motion inside the heliopause. The model of the SW–LISM interaction involves both plasma and neutral components which are treated as fluids. The configuration is chosen where the ISMF is orthogonal to the LISM velocity and tilted 60° to the ecliptic plane. This orientation of the magnetic field is a possible explanation of the 2–3 kHz emission data which is believed to originate ahead of the heliopause. It is shown that the topology of the heliospheric current sheet is substantially affected by the ISMF. The interaction pattern dependence on the neutral hydrogen density is analyzed.  相似文献   

2.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   

3.
The importance for studying the local interstellar medium (LISM) is stressed as well as the need for high resolution spectroscopic data. Such ground-based observations at high signal to noise ratio of interstellar absorption lines in spectra of nearby stars are presented. The kinematic analysis of the detected features reveals the existence of at least three velocity components over five parsecs from the Sun, and another one within twenty parsecs. Using when available UV data, we confirm local variations in the abundance of interstellar deuterium, and suggest the presence of highly ionized species in the LISM. Some preliminary conclusions about the complex structure of the LISM are proposed.  相似文献   

4.
An overview is presented of magnetic-field-related effects in the solar wind (SW) interaction with the local interstellar medium (LISM) and the different theoretical approaches used in their investigation. We discuss the possibility that the interstellar magnetic field (ISMF) introduces north–south and east–west asymmetries of the heliosphere, which might explain observational data obtained by the Voyager 1 and Voyager 2 spacecraft. The SW–LISM interaction parameters that are responsible for the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath are outlined. The possibility of a strong ISMF, which increases the heliospheric asymmetry and the H–He flow deflection, is discussed. The effect of the combination of a slow-fast solar wind during solar minimum over the Sun’s 11-year activity cycle is illustrated. The consequences of a tilt between the Sun’s magnetic and rotational axes are analyzed. Band-like areas of an increased magnetic field distribution in the outer heliosheath are sought in order to discover regions of possible 2–3 kHz radio emission.  相似文献   

5.
Based on our best knowledge of the physical parameters of the LISM, one comes to the conclusion that for the solar system a submagnetosonic configuration of the plasma interface between the LISM and the expanding solar wind plasma is established extending to some 1000 AU distance upwind from the sun. In this region with perturbed interstellar plasma conditions the LISM neutral flow directed towards the inner part of the heliosphere is substantially modulated due to charge exchange interaction processes with the ionized LISM component. Flow velocities, temperatures and densities showing up at the border of the inner solar system can thus not be taken as parameters characterizing the LISM conditions. This interface effect is highly variable for different LISM plasma conditions. The range of the most probable LISM parameters to be expected within this physical scenario is discussed.  相似文献   

6.
The Lunar Imager/SpectroMeter (LISM) is an instrument being developed for onboarding the SELENE satellite that will be launched in 2007. The LISM consists of the three subsystems: Terrain Camera (TC), Multiband Imager (MI), and Spectral Profiler (SP).  相似文献   

7.
A mathematical model is used to study the relative abundance of H+ and He+ ions in the topside ionosphere. It is found that the daytime light-ion densities are strongly coupled with the neutral densities. This fact arises difficulties in modelling the ion composition for IRI without taking into account any particular reference atmosphere. As an example, the transition heights between O+---H+ and O+---He+ are shown, plotted against the neutral densities. The supposed linear dependance gives a clear evidence that all light-ion ionization below these heights will experience stronger influence by the neutral atmosphere.  相似文献   

8.
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath.  相似文献   

9.
The results of the solar wind interaction with the local interstellar medium (LISM) theory are considered. The model is characterized by the presence of two shocks: a bow shock, a heliospheric shock, and a contact discontinuity. On the basis of the theoretical results and the Voyager data, the electron number density in LISM is estimated.  相似文献   

10.
We present the column density distribution of the LISM towards a sample of 15 fast rotators observed with IUE at high resolution. The targets are closer than 200 pc and most of them have lines of sight not previously investigated. Hydrogen column densities are inferred using zinc, known to be little depleted. The results are in general agreement with the broad picture of the LISM drawn by Paresce, with the possible exception of some cases which are discussed. For the few stars for which long wavelength images were available we attempt to derive the MgII/MgI ratio to obtain information on the temperature of the gas in the line of sight.  相似文献   

11.
The heliopause, a surface separating the tenuous hot heliosheath flow and the dense, strongly magnetized interstellar flow, is subject to instabilities of the Rayleigh–Taylor and Kelvin–Helmholtz types. The dynamic evolution of this discontinuity is of considerable importance for understanding the neutral atom and cosmic-ray filtration at the interface. Here, we investigate the stability of the upwind heliopause in the presence of charge exchange collisions using both an analytic (dispersion relation) approach and a numerical model that includes the interstellar magnetic field. The linear analysis yields a cubic dispersion relation that admits imaginary solutions for the full range of wavenumbers, implying that the stagnation point on the heliopause is unconditionally Rayleigh–Taylor unstable to small perturbations propagating parallel to the discontinuity surface. We confirm this result by following the nonlinear development of the instability with a time-dependent simulation using a four fluid MHD-neutral numerical code. For the typical solar wind and LISM conditions, we obtain cyclical evolution of the upwind heliopause with a period of the order of 100 years. We also identify two areas of space physics where the instability may have important implications.  相似文献   

12.
In this paper, using the intensity ratio of carbon ions emission lines, we determined the optical depths at the line center of the CI at about 165.7 nm, CII at about 133.5 nm, CIII at about 117.5 nm and CIV at about 154.9 nm emission lines by escape factor treatment. For CI and CII emission lines, we discuss the intensity ratio of two lines arising from the common upper levels; while for CIII and CIV emission lines, we discuss the intensity ratio of two lines arising from the common lower levels. By introducing the measured abundance of carbon and the results of ionization balance calculations, we make an estimate of the line-of-sight physical thickness of the regions of carbon ions. This discussion will provide some results in the discussion of opacity on the solar ultraviolet (UV) or extreme-ultraviolet (EUV) spectrum.  相似文献   

13.
From an analysis of the electron number densities and velocity distributions as observed at comet Giacobini-Zinner and comet Halley, it appears that in the so-called “transition region” of the coma electron impact ionization can exceed the nominal photoionization rate of H2O molecules but not by an order of magnitude. It is possible in localized regions where electron heating by ion acoustic waves and lower hybrid waves occurs, electron impact would become the dominant ionization (and dissociation) mechanism. The overall effect as limited by in-situ measurements of the neutral gas density distribution could be shown to be small, however.  相似文献   

14.
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.  相似文献   

15.
Simulation experiments on spacecraft charging in space plasma and its neutralization are performed in relation to the electron beam experiment (SEPAC) on Space Shuttle Spacelab 1. A spacecraft simulator or a spherical probe is immersed in a magnetized plasma and a positive high voltage with respect to the plasma is externally applied to it. The current-voltage characteristics follow quite well with the theoretical model of Parker and Murphy [1] in the low voltage, low pressure region. When the voltage rises to more than the ionization potential of the surrounding neutral gas, it departs from the model and the effect of plasma production by the electron current becomes very important. The same kind of ionization effect as this has also been observed in our rocket experiments with an electron beam. The enhancement of the ionization effect by an additional neutral gas injection causes a considerable suppression of the potential rise of a spacecraft emitting an electron beam. This is demonstrated with the SEPAC accelerators in a large space chamber experiment.  相似文献   

16.
The initial reduction of the electron density after the injection explosion is shown to be associated with recombination at the adiabatic cooling under the cloud expansion. Primordial thermal ions can disappear in triple collisions almost entirely. Nevertheless, a minor amount of ions is conserved due to the freezing effect. The further rapid increase in the electron concentration may be attributed to the secondary ionization process. It is shown that the cumulative electronic ionization can account for the observed electron density elevation. The modified two-stream instability can provide a longitudinal (anomalous) resistance for the longitudinal electric field required for an avalanche. The electric field and longitudinal currents arise owing to the polarization with ions entrained by the neutral gas across the magnetic field and magnetized electrons moving along the field.  相似文献   

17.
We have analyzed MgII emissions in the IUE spectra of 91 cool stars in a systematic search for interstellar components. 60% of the stars show evidence of interstellar contamination. The radial velocities of the IS features show that even at short distances (d < 30 pc) the motion of the LISM agrees with that derived from the analysis of optical IS absorptions in the directions of more distant stars. The absence of detectable interstellar lines has allowed us to derive stringent upper limits along the line of sight of many stars. The results suggest that the density of the gas in the immediate vicinity of the sun may be lower than previously estimated. In particular, the presence of the low density region towards the northern galactic pole around HZ43 is confirmed.  相似文献   

18.
We present the multi-wavelength study of short-term variations of Hα line emission located in multiple kernels on the both sides from magnetic neutral line in the 25th July 2004 solar flare observed by VTT (Tenerife). The HXR and Hα emission in the kernels 1 and 3 is close spatially and temporally while in kernels 4 and 7 there is only delayed Hα emission observed tens seconds after HXR in the kernels 1 and 3. The locations of Hα kernels 1, 3, 4 and 7 are on the opposite sides from the magnetic neutral line. The temporal variations of Hα emission in kernels 1 and 3 coincide within 5 s with the HXR photon emission. The latter is found to have double power law photon spectra, which were corrected to a single power law with the turning point technique accounting for Ohmic losses and collisions. The Hα emission is fit by full non-LTE simulations in an atmosphere heated by an electron beam with the parameters derived from the HXR emission. The combination of radiative, thermal and non-thermal mechanisms of excitation and ionization of hydrogen atoms is considered. The temporal evolution of simulated Hα emission in the kernel 3 fits rather well the two observed intensity increases: the first at the flare onset (13:38:39–13:39:30 UT) caused by pure non-thermal excitation by beam electrons and the second one appearing after 13:40:00 UT because of a hydrodynamic heating. The observed close temporal correlation or delay of Hα emission with HXR emission points out to the precipitation either of electron (kernels 1 and 3) or protons (4 and 7).  相似文献   

19.
We study the influence of mass loading on the formation of shocks employing a time-dependent hydrodynamic model. Numerical examples illustrate in which way the formation and propagation of shocks in the plasma is affected by variations of the ionization rate (due to changes of solar wind parameters or of neutral gas production). It is found that mass loading may be an efficient mechanism to prevent the formation of discontinuities in hydrodynamic flows.  相似文献   

20.
雷暴云准静电场和夜间低电离层的电离   总被引:2,自引:0,他引:2  
用点电荷模型计算雷暴云突然放电后形成的准静电后形成的准静电场随高度的分布,以E/N(E的电场大小,N为大气密度)为输入参量,在一定条件下,对Boltzmann方程数值求解,计算电离层电子数密度的扰动。计算结果表明,在约70-90km之间,在约放电后的10ms内,准静电场大于中性大气的击穿电场,将引起大气的雪崩电离,从而引起夜间低电离层电子密度的显著增加,但这种电子密度的增加是暂的,在很短的时期内就恢复到平静时的水平,恢复时间随高度的变化而不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号