首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过自动制孔技术在某飞机尾翼装配中的应用,介绍了自动制孔技术的特点。在自动制孔系统的应用过程中对其关键技术及相关工艺参数进行了试验研究,对比了自动制孔技术与传统制孔方法的效果。  相似文献   

2.
采用机器人进行飞机结构件自动化钻铆工艺过程可以提高制孔、铆接质量,从而提高飞机制造装备的柔性和自动化程度,并保证飞机使用寿命,最终提高飞机制造的总体水平。采用机器人进行飞机结构件自动化制孔在我国航空制造领域的应用还不成熟,特别对于机器人自动制孔应用软件研究及制孔模拟仿真还没有完全掌握,因此对机器人自动制孔技术的研究至关重要。  相似文献   

3.
首先概括介绍数字化柔性装配技术对现代飞机制造业发展所起的重要作用以及发展和研究数字化柔性装配技术关键之一的自动制孔技术的重要性。然后概括介绍MBD模型的基本概念、应用现状,并分析在飞机制造业采用MBD模型的原因。最后详细说明如何深入应用CATIA二次开发技术,准确无误地从MBD模型中自动提取装配信息,为自动制孔编程打好基础。  相似文献   

4.
针对飞机装配自动制孔过程仿真,提出了一种仿真数据的计算生成技术,通过编写软件解析自动制孔设备的加工指令,计算设备在制孔过程中的机构运动数据,CATIA系统读取数据后可以实现自动制孔过程的仿真。  相似文献   

5.
自动制孔具有精度高、一致性好和效率高等优点,离线编程是飞机自动制孔装配的使能技术。针对飞机装配自动制孔过程中单纯基于理论数模编程,不能有效消除累积装配误差和定位偏差对产品连接质量的影响,难以满足实际工程化应用需求等问题,提出了一种用于产品二次定位的照相测量方法,通过测量预连接的基准孔位,采用数模编程与实测补偿相结合的手段,保证了自动制孔位置的准确度,提高装配的质量和效率。  相似文献   

6.
针对上海交通大学研制的应用于飞机机身、机翼蒙皮进行制孔的柔性导轨自动制孔设备,提出了一套以PMAC运动控制卡为核心的开放式数控系统的设计方法。根据飞机自动制孔的特点与要求,设计并分析了柔性导轨自动制孔设备的整体框架、硬件构成、软件模块、设备坐标系下加工代码生成方法。初步制孔试验表明,该系统实现了设备设计功能,能够实现群孔加工。  相似文献   

7.
针对目前飞机组部件自动制孔离线编程人工参与程度高、效率低,质量问题无法预防的现状,提出了基于数据库及标签定义的准确离线编程技术.根据飞机自动制孔的工艺特点,制定了离线编程流程.根据离线编程数据需求,建立了编程数据库.结合数据库以及MBD模型,制定了自动制孔标准件、叠层、厚度、工艺参数等信息提取规则,利用DELMIA中标...  相似文献   

8.
铆接是飞机装配中的一种重要连接方式,铆接孔的垂直度精度对铆接质量有重要影响.传统的手工制孔存在加工质量低、工作强度大和效率低下等问题,已经不能满足高精度和高质量的飞机装配要求.针对飞机蒙皮铆接孔垂直度精度的自动制孔问题,提出了一种高精度的自动制孔方法.采用四点曲面测量方法获得制孔点法线,并通过双偏心盘调姿机构来实现制孔点法线与钻头轴线的重合,实现了高精度的制孔.在航空制孔机器人上进行了制孔试验,试验结果验证了该方法的正确性和有效性.  相似文献   

9.
针对飞机部件自动制孔工艺需求,在具体分析自动制孔末端执行器工作流程的基础之上,通过稳、动态设计和控制系统建模,基于TwinCAT软PLC开发了一套末端执行器控制系统,并最终实现了PID全闭环控制。试验结果表明,该控制系统操作方便,性能稳定,极大提高了飞机部件的制孔效率和装配质量。  相似文献   

10.
柔性导轨制孔系统作为轻型自动制孔设备的代表,具有大柔性、自主移动、安装方便、低成本等特点,受到了世界各大飞机制造厂商的青睐,在现代飞机装配中的应用越来越广泛.通过总结柔性导轨制孔系统在国内外现代飞机装配中的应用与研究现状,介绍了其组成部分,分析了相关关键技术,为今后我国加快发展柔性导轨制孔系统指明了方向.  相似文献   

11.
飞机自动钻铆技术研究现状及其关键技术   总被引:1,自引:0,他引:1  
飞机自动钻铆技术能够实现飞机机身、机翼等处壁板的自动钻铆装配,极大地提高飞机装配质量与装配效率。经过几十年的发展,自动钻铆技术在国外已广泛运用于航空航天制造领域,而国内在这一方面正处于起步阶段,技术水平普遍较低。为此调研国外先进自动钻铆技术的研究应用现状,以GEMCOR、Electroimpact、BROETJE三大国外自动钻铆设备供应商为代表,介绍各自技术特点及在自动钻铆技术方面最新的进展。同时,对国内自动钻铆技术的发展进行简要介绍,指出国内在这一技术发展中存在的问题。此外,对自动钻铆技术中包括高精度定位技术、制孔质量在线检测技术、自动送钉技术、离线编程与仿真技术在内的四大关键技术进行详细分析,总结其研究难点,为国内自动钻铆技术的发展提供参考。  相似文献   

12.
飞机装配中的先进制孔技术与装备   总被引:3,自引:0,他引:3  
制孔加工是飞机装配过程中的重要工作之一.生产效率的高要求,加工质量、精度的苛刻标准,以及复合材料、钛合金等难加工材料的大量使用,使得飞机装配制孔技术不断面临新的挑战.而基于不同切削原理的制孔新方法与技术装备,成为解决当下飞机装配制孔难题的途径之一.  相似文献   

13.
柔性导轨自动制孔设备因其低成本、柔性、占用空间小的优点,在飞机装配中逐渐被大量应用.本文从国外应用情况开始,分析了现阶段国内的需求,介绍了BAA300柔性导轨自动制孔设备,并开展了制孔工艺试验,获得了制孔的位置偏差和孔质量情况,最终得出了经过设备改进即可应用于ARJ21和C919机身段对接区的自动制孔的结论.  相似文献   

14.
介绍了国外飞机先进装配技术的发展状况。包括自动化装配的工装、单元、制孔、钻铆技术及自动化装配系统,并对国内飞机装配技术的发展提出了建议。  相似文献   

15.
便携式螺旋轨迹制孔装置的研制   总被引:1,自引:0,他引:1  
飞机装配存在一些特殊的制孔区域,如翼根、垂尾等部位,这些制孔区域或空间狭窄或有一定高度,通常的自动制孔设备和机器人制孔系统难以发挥自身的优势。对此,研制了一种便携式全电动螺旋轨迹制孔装置,该装置具有结构紧凑、方便携带且可依据程序设定的工艺参数对应叠层材料,可自动改变刀具转速、进给速率等特征,能对航空材料实施螺旋铣孔加工。利用所研制的螺旋轨迹制孔装置对7075–T7351铝合金叠层材料进行制孔验证,制孔精度等均达到了预期,验证了该新型制孔装置及控制方法的合理性。  相似文献   

16.
针对飞机自动化装配制孔系统下位机开发过程中存在的下位机逻辑复杂、开发难度高的问题,提出了一种支持效率优化的可配置制孔装备控制软件开发方法,可根据工艺信息自动生成飞机自动化装配制孔系统下位机控制软件。对飞机自动化装配制孔流程进行了Petri网建模研究,利用赋时变迁Petri网分析了制孔流程的效率,为配置制孔装备控制软件提供依据。通过定义不同的工艺信息,可配置出适用于不同多轴制孔系统的下位机软件。  相似文献   

17.
飞机装配技术面临着自动化、数字化和柔性化的发展趋势,面对日益激烈的竞争,在研制飞机自动化装配系统时需要综合考虑装配效率、系统柔性、设备成本等因素.与壁板自动化装配常用自动钻铆系统不同,自动化制孔系统更常用于部段总装和部件对接,这些位置由于开敞性问题往往只适合采用自动化制孔的方法.轻型自动化制孔系统是在装配效率、系统柔性和设备成本之间折衷的一种方案,受到国内外业界的普遍重视.  相似文献   

18.
在飞机连接装配中,孔加工由于其数量大、要求高、形式多样,因此如何高效高质量完成飞机装配制孔一直是航空制造企业急需解决的难题.例如一架波音747飞机有300多万个连接孔,而美国最先进的F-22战斗机每副机翼要钻14000个精密孔[1].飞机的全部故障总数中,结构件损伤故障的数量一般仅占12%~13%,但是,由于机载成品系统在发生故障后能较为便捷地用新成品代替,结构部件替换起来则比较困难,因此飞机结构件的寿命就决定了飞机的总寿命.如何高效高质量完成飞机装配制孔一直是航空制造企业急需解决的难题.为了满足现代飞机高寿命的要求,可通过多种技术途径改善各连接点的技术状态(表面质量、配合性质、结构形式等),其中一个很重要的途径是通过自动化设备进行自动精密制孔,提高制孔质量[2].  相似文献   

19.
<正>数字化技术的应用是飞机制造业的一次革命性的变革,它将从根本上改变了传统的飞机装配技术。在现代飞机装配中。装配模式已从基于模拟量传递的刚性装配方式发展成为基于全三维数字量传递,以柔性工装为装配定位与夹紧平台,以数控柔性制孔单元和自动钻铆系统为自动化加工设备,以激光跟踪仪等数字化测量装置为在线检测工具,在装配数据及数控程序的协同驱动下,完成飞机部件的自动化装配过程的柔性装配模式,飞机装配已进入  相似文献   

20.
数字化技术的应用是飞机制造业的一次革命性的变革,它将从根本上改变了传统的飞机装配技术[1].在现代飞机装配中,装配模式已从基于模拟量传递的刚性装配方式发展成为基于全三维数字量传递,以柔性工装为装配定位与夹紧平台,以数控柔性制孔单元和自动钻铆系统为自动化加工设备,以激光跟踪仪等数字化测量装置为在线检测工具,在装配数据及数控程序的协同驱动下,完成飞机部件的自动化装配过程的柔性装配模式,飞机装配已进入了数字化、自动化、柔性化、智能化装配时代.而航空专用装配装备技术发展成为推动飞机装配技术进步的引擎.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号