首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are three distinct energy ranges within the broad spectrum of gamma-ray astronomy, low energy (which in turn is subdivided), high energy, and very high and ultra-high energy. Each has its own unique type of instrumentation. Only in the very high-energy range do the telescopes bear any resemblence to optical telescopes; the rest appear more like instrumentation for high-energy physics. The low- and high-energy ranges are now primarly dependent on spaceflight, although some balloon altitude research is still being accomplished. Satellites planned to be launched in the next two years will carry telescopes with considerably more capability than those previously flown in space. In the very high and ultra-high energy realm, large ground based systems are used to detect the secondary radiation from interactions of the gamma radiation with the air. In all cases, software and data analysis are becoming increasingly important aspects of the subject as the data become ever greater and more complex. Beyond the telescopes to be flown in space or installed on the ground soon, instrumentation, taking advantage of new detector techniques which have come into being or older ones which now seem capable of being adapted to space, are being developed for the more distant future.  相似文献   

2.
Gamma-ray lines are the fingerprints of nuclear transitions, carrying the memory of high energy processes in the universe. Setting out from what is presently known about line emission in gamma-ray astronomy, requirements for future telescopes are outlined. The inventory of observed line features shows that sources with a wide range of angular and spectral extent have to be handled: the scientific objectives for gamma-ray spectroscopy are spanning from compact objects as broad class annihilators, over longlived galactic radioisotopes with hotspots in the degree-range to the extremely extended galactic disk and bulge emission of the narrow e-e+ line.The instrumental categories which can be identified in the energy range of nuclear astrophysics have their origins in the different concepts of light itself: geometrical optics is the base of coded aperture systems — these methods will continue to yield adequate performances in the near future. Beyond this, focusing telescopes and Compton telescopes, based on wave- and quantum- optics respectively, may be capable to further push the limits of resolution and sensitivity.  相似文献   

3.
为提高极轴式望远镜的测量精度,借鉴地平式望远镜的系统误差修正方法,推导了基于轴系和球谐函数的极轴式望远镜系统误差修正模型,在分析2种误差修正模型误差项不足的基础上,探索性地提出了一种新的误差修正模型——改进球谐函数系统误差修正模型。对实际测星数据进行误差修正的结果表明,进行改进球谐函数系统误差修正后,精度在时角和赤纬方向上比其他方法提高了50%。  相似文献   

4.
Segmented active optics is a new design concept for making a lightweight optically stable primary reflector for large optical telescopes and especially for space telescopes. The concept applied to a threesegment 20-inch primary mirror has been proven feasible in laboratory experiments. Test results showed diffraction-limited performance with automatic optical figure control to better than L/50 rms.  相似文献   

5.
The scope of observational astronomy in the gamma-ray region of the spectrum is vast. The intimate relationship of these energetic photons with their parent particles and fields provides a direct probe of the high-energy physics phenomena which take place throughout the Universe. As an added bonus the gamma-ray domain contains a wealth of diagnostic information within discrete emission lines, which are derived from a variety of processes including nuclear de-excitation, cyclotron emission, and matter-antimatter annihilation. Consequently observational gamma-ray astronomy addresses directly some of the most fundamental problems in both physics and astrophysics. However, low-energy gamma-rays are the most penetrating photons encountered in nature, and, whilst this factor provides a deep probe of cosmic objects, it ensures that gamma-ray telescopes are massive, both in terms of the stopping power required in the detector systems as well as their shields. Furthermore, the intimate relationship of gamma-rays with nuclear de-excitations ensures that the telescope itself becomes a bright source of background noise, a factor which is aggravated by the necessity that gamma-ray telescopes are obliged to operate in regions pervaded by intense particle fluxes. The background noise experienced in gamma-ray telescopes is, therefore, both high and extremely complex in its origin, and due to the high-energy content of individual photons, their numbers which arrive from distant cosmic sources are necessarily low, even for those objects which radiate the bulk of their power at gamma-ray wavelengths. Current gamma-ray telescopes are thus obliged to operate under conditions of intrinsically low signal-to-noise ratio and it is vital that techniques are developed which reduce the background noise level to more acceptable levels, thus improving the sensitivity. To achieve such a goal, a thorough understanding of the sources of background noise is first required before effective measures can be taken for its reduction.In this paper the sources of background noise are reviewed with the aim to obtain a quantitative analysis of individual contributions, as derived from the various classes of irradiative particle fluxes. The estimated contributions from the individual sources are combined in order to evaluate the total background level of a given telescope in a specific radiation environment, which for practical considerations generally relates to the orbit choice and detailed design of the telescope. The published background noise spectra of a number of past missions are compared to the computed values so as to provide an assessment of the validity of the overall calculations. The level of agreement achieved indicates that a good understanding of the sources of background noise exists. Finally some possibilities for the improvement of the sensitivity of future gammaray telescopes, in terms of the reduction of the background noise, are discussed.  相似文献   

6.
It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel’dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.  相似文献   

7.
While atmospheric Cherenkov telescopes have a small field of view and a small duty fraction, arrays of particle detectors on ground have a 1 sr field of view and a 100% duty fraction. On the other hand, particle detector arrays have a much higher energy threshold and an inferior hadron rejection as compared to Cherenkov telescopes. Low threshold particle detector arrays would have potential advantages over Cherenkov telescopes in the search for episodic or unexpected sources of gamma rays in the multi-TeV energy range. Ways to improve the threshold and hadron rejection of arrays are shown, based on existing technology for the timing method (with scintillator or water Cherenkov counters) and the tracking method (with tracking detectors). The performance that could be achieved is shown by examples for both methods. At mountain altitude (about 4000 m or above) an energy threshold close to 1 TeV could be achieved. For any significant reduction of the hadronic background by selecting muon-poor showers a muon detection area of at least 1000 m2 is required, even for a compact array.  相似文献   

8.
激光测距作为空间目标测定轨精度最高的技术,对非合作目标的测量精度比微波雷达、光电探测等技术高1~2个数量级,非常有利于非合作目标的精密定位、轨道复核及精确编目,保障在轨空间飞行器的安全。激光在非合作目标表面会发生漫反射,返回光斑弥散、回波微弱,采用大口径望远镜接收系统是必要的。鉴于大口径望远镜研制难度大,提出基于单站发射多站接收的空间目标激光测距新方法,即采用多接收望远镜增加接收面积,实现目标测量能力提升。通过分析单站发射多站接收的激光测距技术特点,基于双望远镜系统开展空间合作目标测量实验,验证了多望远镜接收激光信号的可行性,为该测距技术发展奠定了实验基础。  相似文献   

9.
In this review the IR emission from circumstellar material is discussed, both of ionized gas and dust grains, and the astrophysical information that can be extracted from such observations. Some emphasis is placed on the possibilities of stellar IR astronomy using a large space-borne telescope, especially with respect to the much better spatial and spectral resolution of such a telescope compared to the current generation of ground-based and space IR telescopes.  相似文献   

10.
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.  相似文献   

11.
Active control of a thin, deformable mirror is one approach to obtaining diffraction-limited performance from large orbiting telescopes. The control system design requires knowledge of the mirror reaction to the multiple forces used to maintain the desired mirror figure. A structural analysis program is used to obtain estimates of the static deflections of a point-loaded, thin, shallow, spherical primary mirror. The calculated deflections are compared to experimentally measured deflections for a specific configuration.  相似文献   

12.
The Hubble space-based telescope is a great tribute to our progress in space. The ability to place an optical telescope at a significant distance from the Earth's surface, away from the interference of the planet's unsteady atmosphere, have already paid off by producing magnificent records of astronomical activities in the depths of outer space. In the past the problems with the alignment of the Hubble's optics were blamed on the manufacturers of it's optical components. The hastily set investigation concluded that the problem is a spherical aberration of the primary mirror (the primary mirror is said to be 2 microns too flat at the edges). It is suggested that the real culprit is the Parker Effect. Since the time of Galileo Galilei, all telescopes were built, aligned, and used on the Earth's surface. Hubble is the first telescope to be built and aligned on Earth for use in space. Because of this we have to consider the fundamental differences between the alignment of surface-based and space-based telescopes. For those who missed our article “The Parker Effect and Navigation in Space” published in the January issue. The Parker Effect describes the result of interaction between inertial bodies (anything that has mass) and non-inertial media (light or other E/M fields)  相似文献   

13.
The possibility of observing gamma ray emission from supernova remnants is discussed. It is shown that this could be possible in the 100 MeV band accessible to satellite instruments, but that confusion with the Galactic background is a major problem. At TeV energies and with modern imaging atmospheric cherenkov telescopes the situation should be much better and at least some of the nearby remnants may be detectable. Positive detections in both bands would provide a decisive test of current theoretical ideas on particle acceleration in supernova remnants and the origin of the Galactic cosmic rays.  相似文献   

14.
A review of the potential of Neutrino Telescopes to contribute to Astrophysics and Elementary Particle Physics is presented. The status of the four neutrino telescopes presently under construction is reviewed. An inexpensive modular design of how to reach an 1 km2 telescope with an energy threshold of a few GeV is proposed.  相似文献   

15.
Deep Impact Mission Design   总被引:1,自引:0,他引:1  
The Deep Impact mission is designed to provide the first opportunity to probe below the surface of a comet nucleus by a high-speed impact. This requires finding a suitable comet with launch and encounter conditions that allow a meaningful scientific experiment. The overall design requires the consideration of many factors ranging from environmental characteristics of the comet (nucleus size, dust levels, etc.), to launch dates fitting within the NASA Discovery program opportunities, to launch vehicle capability for a large impactor, to the observational conditions for the two approaching spacecraft and for telescopes on Earth.  相似文献   

16.
The Solar Electron and Proton Telescope for the STEREO Mission   总被引:1,自引:0,他引:1  
The Solar Electron and Proton Telescope (SEPT), one of four instruments of the Solar Energetic Particle (SEP) suite for the IMPACT investigation, is designed to provide the three-dimensional distribution of energetic electrons and protons with good energy and time resolution. This knowledge is essential for characterizing the dynamic behaviour of CME associated and solar flare associated events. SEPT consists of two dual double-ended magnet/foil particle telescopes which cleanly separate and measure electrons in the energy range from 30–400 keV and protons from 60–7?000 keV. Anisotropy information on a non-spinning spacecraft is provided by the two separate telescopes: SEPT-E looking in the ecliptic plane along the Parker spiral magnetic field both towards and away from the Sun, and SEPT-NS looking vertical to the ecliptic plane towards North and South. The dual set-up refers to two adjacent sensor apertures for each of the four view directions: one for protons, one for electrons. The double-ended set-up refers to the detector stack with view cones in two opposite directions: one side (electron side) is covered by a thin foil, the other side (proton side) is surrounded by a magnet. The thin foil leaves the electron spectrum essentially unchanged but stops low energy protons. The magnet sweeps away electrons but lets ions pass. The total geometry factor for electrons and protons is 0.52 cm2?sr and 0.68 cm2?sr, respectively. This paper describes the design and calibration of SEPT as well as the scientific objectives that the instrument will address.  相似文献   

17.
18.
Peacock  A.  Ellwood  J. 《Space Science Reviews》1988,48(3-4):343-365
The high throughput X-ray astrophysics mission is the second cornerstone in ESA's long-term space science programme. The long-duration X-ray observatory consists of three heavily nested X-ray imaging telescopes coupled to X-ray CCD cameras and gratings which provide a high throughput facility for cosmic X-ray spectroscopy. The mission is due for launch in 1998 with an anticipated lifetime of over ten years. The basic mission including the model payload is described and the capability of the observatory to tackle some of the more important scientific priorities are highlighted. Examples of some of the type of results we can expect from the mission are also provided. This observatory should enable major advances in X-ray astrophysics to be made at the turn of the century.  相似文献   

19.
Sun  Ming-Tsung  Chou  Dean-Yi  TON Team  the 《Space Science Reviews》2003,107(1-2):103-106
We describe the present status of the project of the Taiwan Oscillation Network (TON) and discuss a scientific result using the TON data. The TON is a ground-based network to measure solar intensity oscillations for the study of the solar interior. Four telescopes have been installed in appropriate longitudes around the world. The TON telescopes take K-line full-disk solar images of diameter 1000 pixels at a rate of one image per minute. The data has been collected since October of 1993. The TON high-spatial-resolution data are specially suitable for the study of local properties of the Sun. In 1997 we developed a new method, acoustic imaging, to construct the acoustic signals inside the Sun with the acoustic signals measured at the solar surface. From the constructed signals, we can form intensity map and phase-shift map of an active region at various depths. The direct link between these maps and the subsurface wave-speed perturbation suffers from the poor vertical resolution of acoustic imaging. Recently an inversion method has been developed to invert the measured phase travel time perturbation to estimate the distribution of wave-speed perturbation based on the ray approximation. This technique of acoustic imaging has been used to image the far-side of the Sun that could provides information on space weather prediction. The TON Team includes: Antonio Jimenez (Instituto Astrofisica de Canarias, Spain); Guoxiang Ai and Honqi Zhang (Huairou Solar Observing Station, P.R.C.); Philip Goode and William Marquette (Big Bear Solar Observatory, U.S.A.); Shuhrat Ehgamberdiev and Oleg Ladenkov (Ulugh Beg Astronomical Institute, Uzbekistan) This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
For a number of important questions in VHE/UHE cosmic ray physics wide angle air Cerenkov detectors offer superior performance compared to scintillator arrays or air Cerenkov telescopes. On hand of the HEGRA air Cerenkov detector AIROBICC the general principle and performance will be discussed. Ideas and prospects for a detector with an energy threshold around 1 to 3 TeV will be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号