首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10?15. The test is based on the precise measurement delivered by a differential electrostatic accelerometer on-board a drag-free microsatellite which includes two cylindrical test masses submitted to the same gravitational field and made of different materials. The experiment consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless at a well-known frequency. This high precision experiment is compatible with only very little perturbations. However, aliasing arises from the finite time span of the measurement, and is amplified by measurement losses. These effects perturb the measurement analysis. Numerical simulations have been run to estimate the contribution of a perturbation at any frequency on the EP violation frequency and to test its compatibility with the mission specifications. Moreover, different data analysis procedures have been considered to select the one minimizing these effects taking into account the uncertainty about the frequencies of the implicated signals.  相似文献   

2.
The French space mission MICROSCOPE aims at testing the Equivalence Principle (EP) up to an accuracy of 10?15. The experiment will be carried out on a satellite which is developed and produced within the CNES Myriade series. The measuring accuracy will be achieved by means of two high-precision capacitive differential accelerometers that are built by the French institute ONERA, see Touboul and Rodrigues (Class. Quantum Gravity 18:2487–2498, 2001). At ZARM, which is a member of the science team, the data evaluation process is prepared. Therefore, a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the EP violation signal. Currently, the ZARM Drag-Free simulator, a tool to support mission modelling, is adapted for the MICROSCOPE mission in order to simulate test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, also. Additionally, detailed modelling of the on-board capacitive sensors is done. The actual status of the mission modelling will be presented. Particularly, the modelling of disturbances forces will be discussed in detail.  相似文献   

3.
The MICROSCOPE mission, to be launched in 2011, will perform the test of the universality of free fall (Equivalence Principle) to an accuracy of 10?15. The payload consists of two sensors, each controlling the free fall of a pair of test masses: the first for the test of the Equivalence Principle (titanium/platinum), the second for performance verification (platinum/platinum). The capability to detect a faint violation signal of the EP test is conditioned upon the rejection of disturbances arising from the coupling and misalignments of the instrument vectorial outputs. Therefore the performance of the mission depends on the success of the series of calibration operations which are planned during the satellite life in orbit. These operations involve forced motion of the masses with respect to the satellite. Specific data processing tools and simulations are integral parts of the calibration and performance enhancement process, as are the tests operated on ground at the ZARM drop tower. The presentation will focus on the current status of the MICROSCOPE payload, the rationale for the in-orbit calibrations, the data processing operations and the tests performed at the ZARM drop tower.  相似文献   

4.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

5.
Propulsion system characteristics determine to a large extent the dynamic behavior of a spacecraft. For many future science missions technologically novel micro-propulsion systems are required. In order to support its characterization, in-orbit experiments and subsequent data processing on ground can be an appropriate add-on to ground-based laboratory measurements. In this paper two identification methods for three major thruster parameters, thrust gain, thrust direction, and lever arm, are presented and compared. They are based on measurements of a precise inertial instrument that consists of two test masses, whose degrees of freedom are “mixed” with respect to its control principle, i.e. they are either drag-free controlled (free-flying) or suspension controlled (accelerometer mode). Using drag-free coordinates is a novel approach. It is related and compared to the more conventional approach using “accelerometer-like” measurements.  相似文献   

6.
Strategies for in-orbit calibration of drag-free control systems   总被引:3,自引:0,他引:3  
Drag-Free Satellites (DFS) are a class of scientific satellite missions designed for research on fundamental physics as well as geodesy. They consist, basically, of a small inner satellite (test mass) located in a cavity inside a larger satellite, the normal one. The Drag-Free Attitude Control System (DFACS) is the most complex technology on-board these satellites. This key technology allows the residual accelerations on experiments on board the satellites to be significantly reduced. In order to achieve this very low disturbance environment (for some missions <10−14 g) the drag-free control system has to be optimized. This optimization process is required because of uncertainties in system parameters that demand a robustness of the control system. This paper will present approaches for in-orbit calibration of drag-free control systems. The discussion includes modeling, with scale factors and cross couplings, possible excitation signals, comparison of different parameter identification/estimation methods as well as simulation results.  相似文献   

7.
以加速度计为代表的惯性器件技术和以惯性稳定平台为代表的惯性系统技术,极大地推动了重力仪和重力梯度仪的发展。重力测量技术的不断进步,也有效支撑惯性导航系统性能的不断提升,并牵引了惯性技术研究的不断深入。国内惯性技术领域应将重力测量仪器研制作为一项长期而重要的主题,研制过程中应充分发掘现有技术潜力加快研制进度,并注重产品小型化和轻量化设计,推进重力/重力梯度测量技术协同发展,不断提高技术水平,拓展产品应用领域,推进惯性技术的可持续发展。  相似文献   

8.
Electromagnetic radiation emitted from a source carries momentum. Thus, the dissipation of waste thermal energy can produce disturbance forces on spacecraft surfaces if the energy is not dissipated in a symmetric pattern. This force can be computed for a plate element as the quotient of the radiated power in normal direction and the speed of light. Depending on mission and spacecraft design the resulting surface forces have to be included into the disturbance budget. At ZARM an elaborated method for the exact modeling of the disturbances caused by heat radiation was developed which can be used for any satellite mission with high requirements on perturbation knowledge (e.g. LISA, LISA pathfinder, MICROSCOPE). The method which will be presented in this paper is based on raytracing and finite element (FE) thermal analysis. As a demonstration of the potential of the method, preliminary results acquired with a test case model of the Pioneer 10/11 Radioisotopic Thermal Generators (RTGs) will be shown.  相似文献   

9.
为明确微机械加速度计在振荡输入过程中直流输出的情况,着重分析了静电力反馈电容式微加速度计振荡频率低于微加速度计带宽和在微加速度计带宽附近两种情况下的失衡机理。为说明微加速度计与传统加速度计的整流误差差异,对两种整流误差的情况进行了半定量计算。本文的结论说明了微加速度计与石英挠性加速度计等传统惯性仪表在整流误差方面的区别;在此基础上,引申出由于整流误差决定不同种类的微加速度计有着不同标定要求和适用范围的结论。  相似文献   

10.
Canuto  E.  Martella  P.  Sechi  G. 《Space Science Reviews》2003,108(1-2):357-366
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite, currently planned to he launched in the course of 2006, will require a precise drag compensation and a fine attitude control along the Local Orbiting Reference Frame (LORF) of a polar Sun-synchronous low orbit, allowing the Earth gravity field to be recovered with unprecedented accuracy by post-processing the scientific telemetry. To this aim, the spectral density of the spacecraft linear and angular accelerations must be limited below 0.025 respectively, in the frequency range from 5 mHz to 0.1 Hz, the gradiometer measurement bandwidth. In the same range, the orientation errors of the spacecraft in the LORF and of the LORF in the inertial frame must be kept below 10 . The Drag-Free Mode, encharged of drag-free and attitude control (DFAC) during measurement phases, determines the spacecraft state vector using a very precise gradiometer, one large Field-of-View Star Tracker and a Satellite-to-Satellite Tracking Instrument. Force and torque commands are actuated by two assemblies of thrusters: a single ion-thruster acting along the orbital direction, a set of eight micro-thrusters acting along the other five degrees of freedom. To cover every mission scenario, other control modes have been studied and designed: the Coarse Pointing Mode dedicated to rate damping and Sun acquisition, the Fine Pointing Mode handling the transition to Drag-Free Mode and the Ultimate Safe Mode, a survival operative mode to improve mission reliability. Results presented in this paper give a positive perspective on the solidity of the current DFAC design. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.  相似文献   

12.
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.  相似文献   

13.
虚拟仪器是计算机技术与仪器技术深层次结合产生的全新概念的仪器,它实现了测量仪器的智能化、多样化、模块化特点。在虚拟仪器的硬件平台确定后,选用LabVIEW软件作为虚拟仪器软件平台,并利用其图形化编程特点,在虚拟信号发生器程序设计基础上设计了传感器灵敏度校准程序,并应用该程序实现了压电式加速度传感器灵敏度校准。与使用传统仪器进行压电式加速度传感器校准相比,具有校准过程速度快、操作简单、且校准结果准确的特点。  相似文献   

14.
Lamy  P. L.  Floyd  O.  Boclet  B.  Wojak  J.  Gilardy  H.  Barlyaeva  T. 《Space Science Reviews》2019,215(5):1-20

This paper presents the results of in-orbit commissioning of the first Czech technological CubeSat satellite of VZLUSAT-1. The 2U nanosatellite was designed and built during the 2013 to 2016 period. It was successfully launched into Low Earth Orbit of 505 km altitude on June 23, 2017 as part of international mission QB50 onboard a PSLV C38 launch vehicle. The satellite was developed in the Czech Republic by the Czech Aerospace Research Centre, in cooperation with Czech industrial partners and universities. The nanosatellite has three main payloads. The housing is made of a composite material which serves as a structural and radiation shielding material. A novel miniaturized X-Ray telescope with lobster-eye optics and an embedded Timepix detector represents the CubeSat’s scientific payload. The telescope has a wide field of view. VZLUSAT-1 also carries the FIPEX scientific instrument as part of the QB50 mission for measuring the molecular and atomic oxygen concentration in the upper atmosphere.

  相似文献   

15.
针对石英加速度计偏值问题,提出了摆片组粘接胶粘剂的选用原则,并应用有限元软件进行了仿真研究.分析结果表明,固化后弹性模量小的胶粘剂粘接面产生的应力较小,有利于提高石英加速度计偏值的稳定性.进一步对选用的弹性胶粘剂进行了强度检测,测试结果表明石英加速度计的偏值稳定性得到了明显改善.  相似文献   

16.
The LISA Mission (Laser Interferometer Space Antenna) is currently under mission formulation with a launch date planned in 2020. The purpose of the mission is the observation of gravitational waves at frequencies between 0.1 mHz and 1 Hz by measuring distance fluctuations between inertial reference points, represented by cubic proof masses. In order to provide a sufficient sensitivity of the instrument, distance fluctuations between two inertial reference points must be measured with a strain accuracy of around 10?20 Hz?1/2. This is achieved by setting up a laser interferometer with a base-length of 5?106 km and a path-length measurement noise in the order of 10 pm?Hz?1/2. For a correct evaluation of the data on the ground, it is essential that the science data telemetry preserves all required frequency domain information. That is, any on-board data-processing and down-sampling must be done with great care in order not to introduce aliasing or other artifacts into the data stream. As an additional complication, most of the optical metrology data is dominated by laser phase noise which is about eight orders of magnitude larger than the required instrument sensitivity. However, by applying a method called “time-delayed interferometry” during the ground data processing, this laser phase noise can be eliminated from the data. This method has already been demonstrated in a detailed simulation environment, but it requires a very careful filtering, synchronization, and interpolation of the individual data streams. Last but not least, a calibration of system parameters is necessary in many areas of the LISA measurement system. The system design must therefore ensure that all data required for these calibrations is available on-ground in a quality that allows a successful computation of the calibration coefficients within a reasonable time-frame. The data streams do not only include data from the optical metrology system, but also from the drag-free and attitude control system which are used to derive other information, such as the charge state of the proof mass. This yields a strong coupling between the different disciplines since data that is only used for housekeeping purposes in other missions becomes an essential part of the science data stream for the LISA mission. This paper gives an overview of the LISA measurement and data-processing chain. It highlights the most challenging areas that have been identified so far and describes the intended solution methods.  相似文献   

17.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   

18.
A generic drag-free simulator has been developed to aid in the design, on-orbit and post-mission data analysis phases of increasingly complex future missions such as Gaia and STEP. Adaptation to the recent science mission Gravity Probe B (GP-B) has been carried out for a first simulator verification with actual flight data. Lessons learned from GP-B have shown that the controls simulator, developed concurrently with GP-B, has been invaluable to test flight control design and furthermore to resolve on-orbit anomalies in a time-saving manner. A complete mission software simulator including controls, full-body dynamics and comprehensive spacecraft environment disturbances has been established for Gravity Probe B. This simulator provides a reference and development platform for future mission design. The importance of this effort lies in the challenge to meet rising science requirements for future missions in the area of maximum disturbance rejection.  相似文献   

19.
The forthcoming 10 cm range tracking accuracy capability holds much promise in connection with a number of Earth and ocean dynamics investigations. These include a set of earthquake-related studies of fault motions and the Earth's tidal, polar and rotational motions, as well as studies of the gravity field and the sea surface topography which should furnish basic information about mass and heat flow in the oceans. The state of the orbit analysis art is presently at about the 10 m level, or about two orders of magnitude away from the 10 cm range accuracy capability expected in the next couple of years or so. The realization of a 10 cm orbit analysis capability awaits the solution of four kinds of problems, namely, those involving orbit determination and the lack of sufficient knowledge of tracking system biases, the gravity field, and tracking station locations. The Geopause satellite system concept offers promising approaches in connection with all of these areas. A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 Earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit s, in this sense, at the geopotential boundary, i.e., the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analyses and accelerometers. The Geopause satellite system also provides the tracking geometery and coverage needed for determining the orbit, the tracking system biases and the station locations. Studies indicate that the Geopause satellite, tracked with a 2 cm ranging system from nine NASA affiliated sites, can yield decimeter station location accuracies. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. This means not only that redundant data are available for determining tracking system biases, but also that both components of the polar motion can be observed frequently. When tracking Geopause, the NASA sites become a two-hemisphere configuration which is ideal for a number of Earth physics applications such as the observation of the polar motion with a time resolution of a fraction of a day. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography. Geopause tracking a coplanar, drag-free satellite for two months to 0.03 mm per second accuracy can yield the geoid over the entire Earth to decimeter accuracy with 2.5° spatial resolution. Two Geopause satellites tracking a coplanar altimeter satellite can then yield ocean surface heights above the geoid with 7° spatial resolution every two weeks. These data will furnish basic boundary condition information about mass and heat flows in the oceans which are important in shaping weather and climate.  相似文献   

20.
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号