首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge exchange lifetimes for ring current ions   总被引:1,自引:0,他引:1  
In applying the charge exchange mechanism to ion phenomena within the Earth's magnetosphere it is critical to the proper interpretation of observations that the charge exchange lifetimes for the ions be known as accurately as possible. Various new results have been published which significantly modify the charge exchange lifetimes which have been used in space physics research during the past decade and a half. Some of the newer results have been used in the application of the charge exchange decay mechanism but the use has been limited and for the most part incomplete. The neutral hydrogen density distribution now yields lifetimes which are shorter than previously calculated, while the functional dependence of the lifetimes on pitch angle provides for slower decay for ions mirroring off the geomagnetic equator. This review coalesces and summarizes the latest and best measurements of the physical quantities involved in the complete calculation of the charge exchange lifetime of the mirroring magnetospheric ions.  相似文献   

2.
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered.  相似文献   

3.
The recent close encounters of Pioneer-10 (December 1973) and Pioneer-11 (December 1974) with the planet Jupiter provided the first in situ observations of zenomagnetically trapped particle radiation. Such observations represented a major advance in planetary research. Prior estimates of radiation intensities (particle fluxes) at Jupiter had necessarily relied (in the case of electrons) upon inferences from Jovian decimetric radio emission observed at the Earth and (in the case of protons) upon postulates for the numerical scaling from terrestrial proton intensities. The Pioneer-10 and Pioneer-11 observations have stimulated continuing theoretical efforts to understand the reported findings and to extrapolate from them to other planets and other epochs. While the analysis of trapped-radiation data from the Pioneer spacecraft is far from being completed, a consensus has developed with respect to the physical mechanisms that must be considered. The observed radiation belts seem to be populated by radial diffusion from an external source. The diffusion coefficient seems to be that derived from fluctuations in the polarization electric field produced by neutral winds in the Jovian ionosphere, which is coupled to the magnetosphere by equipotential B-field lines. Radiation-belt electrons lose energy and change their equatorial pitch angles by virtue of synchrotron emission. Radiation-belt ions and electrons both may be subject to pitch-angle diffusion caused by waves that the respective particle anisotropies have created through plasma instabilities. Finally, radiation-belt ions and electrons seem to experience absorption by the inner Jovian satellites (moons) in a manner that may depend upon the species and energy of the incident radiation-belt particle. It is not yet known whether satellite-associated clouds of sodium and sulfur contribute substantially to the inferred particle absorption. Also still open is the question of whether the satellites provide a substantial source of radiation-belt particles. Moreover, there remains doubt concerning the configuration of the outer Jovian magnetosphere and the influence of this configuration on the zenomagnetic trapping of energetic charged particles.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

4.
After one year of operation the GEOS-1 Ion Composition Experiment has surveyed plasma composition at all local times in the L range 3 8 and the energy per charge range from thermal to 16 keV/e. From measurements made in the keV range during eleven magnetic storms we find that the percentage of heavy (M/Q > 1) ions present in the outer magnetosphere increases by a factor of 3 to 10 during disturbances. We conclude that two independent sources (solar wind, characterized by 4He2+, and ionosphere, characterized by O+) give on the average comparable contributions to injected populations, although in a single event one or the other source may dominate. However, in magnetically quiet periods protons are the dominant species with a few percent of heavy ions. With the help of special satellite manoeuvres magnetic field aligned fluxes of 0.05-3 keV/e H+, He+, O+ with traces of O2+ have been observed which may be related to ion beams found previously at lower altitudes in the auroral zone. At still lower energies ( 1 eV/e) the thermal plasma population is found to be made up of six ion species, three of which, D+, He2+ and O2+, were unknown in the magnetosphere prior to the GEOS-1 measurements. We present here a study of the evolution of doubly charged ions and their parent populations over four consecutive days. Various production mechanisms for doubly charged ions are discussed. We argue that ionization of singly charged ions by UV and energetic electrons and protons is the dominant process for plasmasphere production. Furthermore, the observed high concentrations of O2+ at high altitudes are a result of production in the upper ionosphere and plasmasphere combined with upward transport by thermal diffusion. Throughout the 1 year lifetime of GEOS-1 the ICE functioned perfectly and, because of its novel design, a short review of technical performance is included here.  相似文献   

5.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   

6.
Heavy ions in the magnetosphere   总被引:2,自引:0,他引:2  
For purposes of this review heavy ions include all species of ions having a mass per unit charge of 2 AMU or greater. The discussion is limited primarily to ions in the energy range between 100 eV and 100 keV. Prior to the discovery in 1972 of large fluxes of energetic O+ ions precipitating into the auroral zone during geomagnetic storms, the only reported magnetosphere ion species observed in this energy range were helium and hydrogen. More recently O+ and He+ have been identified as significant components of the storm time ring current, suggesting that an ionosphere source may be involved in the generation of the fluxes responsible for this current. Mass spectrometer measurements on board the S3-3 satellite have shown that ionospheric ions in the auroral zone are frequently accelerated upward along geomagnetic field lines to several keV energy in the altitude region from 5000 km to greater than 8000 km. These observations also show evidence for acceleration perpendicular to the magnetic field and thus cannot be explained by a parallel electric field alone. This auroral acceleration region is most likely the source for the magnetospheric heavy ions of ionospheric origin, but further acceleration would probably be required to bring them to characteristic ring current energies. Recent observations from the GEOS-1 spacecraft combined with earlier results suggest comparable contributions to the hot magnetopheric plasma from the solar wind and the ionosphere.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

7.
8.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   

9.
IMAGE mission overview   总被引:3,自引:0,他引:3  
Burch  J.L. 《Space Science Reviews》2000,91(1-2):1-14
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission is the first mission in NASA's MIDEX (Mid-size Explorer) program. It is the first satellite mission that is dedicated to imaging the Earth's magnetosphere. IMAGE will utilize the techniques of ultraviolet imaging, neutral atom imaging, and radio plasma imaging to map out global distributions of the electron and proton aurora; the helium ions of the plasmasphere; the ionospheric ion outflow; the medium-energy ions of the near-Earth plasma sheet, ring current, and polar cusp; the high-energy ions of the ring current and trapped radiation belts; and the total plasma density from the ionosphere out to the magnetopause. The imaging perspective is from an elliptical polar orbit with apogee at latitudes from 40° to 90° in the northern hemisphere. For ultraviolet and neutral atom imaging, the time resolution is set by the two-minute spin period of the IMAGE spacecraft, which will be sufficient to track the development of magnetospheric substorms. An important feature of the IMAGE mission is its completely open data set with no proprietary data or intervals. All data, along with software needed for plotting and analysis, will be available within 24 hours of acquisition.  相似文献   

10.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   

11.
Ion cyclotron waves (hereafter ICW's) generated in the magnetosphere by the ion cyclotron instability of 10–100 keV protons are now known to be the origin of short-period (0.1–5 Hz) electromagnetic field oscillations observed by synchronous spacecraft and on the earth's surface. Observations of the various wave characteristics, including spectral and polarization properties that lead to the identification of generation and propagation mechanisms and regions in the magnetosphere are described with reference to ATS-6, GEOS and ground-based wave data and interpreted using cold plasma propagation theory. The presence of heavy ions (O+, He+) dramatically modifies ICW magnetospheric propagation characteristics giving rise to spectral slots and polarization reversals. These properties may be used in plasma diagnostics. Finally satellite-ground correlations and techniques for determining the magnetospheric source position of ICW's not seen at synchronous orbit but observed on the ground as structured Pc1 pulsations are considered.  相似文献   

12.
The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.  相似文献   

13.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

14.
Sources of Ion Outflow in the High Latitude Ionosphere   总被引:4,自引:0,他引:4  
Yau  A. W.  André  M. 《Space Science Reviews》1997,80(1-2):1-25
Ion composition observations from polar-orbiting satellites in the past three decades have revealed and confirmed the occurrence of a variety of ion outflow processes in the high-latitude ionosphere. These processes constitute a dominant source of ionospheric plasma to the Earth's magnetosphere. We review the current state of our observational knowledge on their occurrence, energy, composition, variability, interrelationships, and quantitative contributions to the overall mass input to the magnetosphere. In addition, we identify the prevalent sources and the gaps of our current understanding of these sources.  相似文献   

15.
High energy neutral atom (hena) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Mitchell  D.G.  Jaskulek  S.E.  Schlemm  C.E.  Keath  E.P.  Thompson  R.E.  Tossman  B.E.  Boldt  J.D.  Hayes  J.R.  Andrews  G.B.  Paschalidis  N.  Hamilton  D.C.  Lundgren  R.A.  Tums  E.O.  Wilson  P.  Voss  H.D.  Prentice  D.  Hsieh  K.C.  Curtis  C.C.  Powell  F.R. 《Space Science Reviews》2000,91(1-2):67-112
The IMAGE mission will be the first of its kind, designed to comprehensively image a variety of emissions from the Earth's magnetosphere, with sufficient time resolution to follow the dynamics associated with the development of magnetospheric storms. Energetic neutral atoms (ENA) emitted from the ring current during storms are one of the key emissions that will be imaged. This paper describes the characteristics of the High Energy Neutral Atom imager, HENA. Using pixelated solid state detectors, imaging microchannel plates, electron optics, and time of flight electronics, HENA is designed to return images of the ENA emitting regions of the inner magnetosphere with 2 minute time resolution, at angular resolution of 8 degrees or better above the energy of 50 keV/nucleon. HENA will also image separately the emissions in hydrogen, helium, and oxygen above 30 keV/nucleon. HENA will reject energetic ions below 200 keV/charge, allowing ENA images to be returned in the presence of ambient energetic ions. HENA images will reveal the distribution and the evolution of energetic ion distributions as they are injected into the ring current during geomagnetic storms, as they drift about the Earth on both open and closed drift paths, and as they decay through charge exchange to pre-storm levels. Substorm ion injections will also be imaged, as will the regions of low altitude, high latitude ion precipitation into the upper atmosphere.  相似文献   

16.
The current state of research involving manifestations of nonlinearity in geomagnetic pulsations is reviewed. Traditionally, the attention of researchers was focused on the effects of resonant interaction of geomagnetic pulsations with small groups of energetic particles, which actually means the study of the quasi-linear relaxation of radiation belt ions, the modulation of auroral electron fluxes, etc. The present review concentrates on the problem of the nonlinear effect influence of pulsations on the backgroud (cold) plasma and on the geomagnetic field. This kind of interaction results in a significant modification of the plasma distribution in the magnetosphere. Self-consistent wave structures—solitons and vortices may occur as well. Such nonlinear effects contribute to physics of geomagnetic pulsations and are also of fundamental importance for general physics. Another set of more narrow problems considered in the review, is related to phenomenological modeling of fluctuational and critical phenomena in the magnetosphere. The essence of our approach is to present the magnetosphere as a black box, whose properties should be determined by the statistical characteristics of its output signals. This approach to phenomenology can be a useful supplement to the methods of microscopic modeling aimed at detecting nonlinear manifestations of geomagnetic pulsations.  相似文献   

17.
Several recent results concerning the nature of the Earth's magnetotail are briefly reviewed. These observational findings include: (1) the three-dimensional character of the plasma sheet via a comprehensive survey of proton bulk flows, (2) a region of earthward flowing plasmas at the interfaces of the plasma sheet and magnetotail lobes during magnetic substorm recovery, and (3) the signature of electrostatic acceleration for protons within the jetting plasmas from magnetotail fireballs.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

18.
Wolf  R. A.  Spiro  R. W. 《Space Science Reviews》1997,80(1-2):199-216
Over the last 25 years, considerable scientific effort has been expended in the development of quantitative models of the dynamics of Earth's inner magnetosphere, particularly on studies of the injection of the storm-time ring current and of dynamic variations in the shape and size of the plasmasphere. Nearly all modeling studies of ring-current injection agree that time-varying magnetospheric convection can produce approximately the ion fluxes that are observed in the storm-time ring current, but the truth of that assumption has never been demonstrated conclusively. It is not clear that the actual variations of convection electric fields are strong enough to explain the observed flux increases in ~100 keV ions at the peak of the storm-time ring current. Observational comparisons are generally far from tight, primarily due to the paucity of ring-current measurements and to basic limitations of single-point observations. Also, most of the theoretical models combine state-of-the-art treatment of some aspects of the problem with highly simplified treatment of other aspects. Even the most sophisticated treatments of the sub-problems include substantial uncertainties, including the following: (i) There is still considerable theoretical and observational uncertainty about the dynamics of the large-scale electric fields in the inner magnetosphere; (ii) No one has ever calculated a force-balanced, time-dependent magnetic-field model consistent with injection of the storm-time ring current; (iii) The most obvious check on the overall realism of a ring-current injection model would be to compare its predicted Dst index against observations; however, theoretical calculations of that index usually employ the Dessler-Parker-Sckopke relation, which was derived from the assumption of a dipole magnetic field and cannot be applied reliably to conditions where the plasma pressure significantly distorts the field; (iv) Although loss rates by charge exchange and Coulomb scattering can be calculated with reasonable accuracy, it remains unclear whether wave-induced ion precipitation plays an important role in the decay of the ring current. However, considerable progress could be made in the next few years. Spacecraft that can provide images of large regions of the inner magnetosphere should eliminate much of the present ambiguity associated with single-point measurements. On the theoretical side, it will soon be possible to construct models that, for the first time, will solve a complete set of large-scale equations for the entire inner magnetosphere. The biggest uncertainty in the calculation of the size and shape of the plasmasphere lies in the dynamics and structure of the electric field. It is still not clear how important a role interchange instability plays in determining the shape of the plasmapause or in creating density fine structure.  相似文献   

19.
Five Years of Stereo Magnetospheric Imaging by TWINS   总被引:1,自引:0,他引:1  
Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is the first stereoscopic magnetospheric imager. TWINS is a NASA Explorer Mission of Opportunity performing simultaneous energetic neutral atom (ENA) imaging from two widely-separated Molniya orbits on two different spacecraft, and providing nearly continuous coverage of magnetospheric ENA emissions. The ENA imagers observe energetic neutrals produced from global ion populations, over a broad energy range (1–100 keV/u) with high angular (4°×4°) and time (about 1-minute) resolution. TWINS distinguishes hydrogen ENAs from oxygen ENAs. Each TWINS spacecraft also carries a Lyman-α geocoronal imager to monitor the cold exospheric hydrogen atoms that produce ENAs from ions via charge exchange. Complementing the imagers are detectors that measure the local charged particle environment around the spacecraft. During its first five years of science operations, TWINS has discovered new global properties of geospace plasmas and neutrals, fostered understanding of causal relationships, confirmed theories and predictions based on in situ data, and yielded key insights needed to improve geospace models. Analysis and modeling of TWINS data have: (1) obtained continuous (main phase through recovery) global ion spectra, (2) revealed a previously unknown local-time dependence of global pitch angle, (3) developed quantitative determination of ion fluxes from low altitude ENAs (4) determined dynamic connections between local pitch angle and global ion precipitation, (5) confirmed local-time dependence of precipitating ion temperature, (6) imaged global dynamic heating of the magnetosphere, (7) explained why the oxygen ring current survives longer into recovery than hydrogen, and (8) revealed new global exospheric density features and their influence upon ring current decay rates. Over the next several years of the solar cycle, TWINS observations of three-dimensional (3D) global ion dynamics, composition, origins and destinies are crucial to capture the system-level view of geospace over the full range of geomagnetic and solar activity conditions.  相似文献   

20.
Although macroscale features dominate astrophysical images and energetics, the physics is controlled through microscale transport processes (conduction, diffusion) that mediate the flow of mass, momentum, energy, and charge. These microphysical processes manifest themselves in key (all) boundary layers and also operate within the body of the plasma. Crucially, most plasmas of interest are rarefied to the extent that classical particle collision length- and time-scales are long. Collective plasma kinetic phenomena then serve to scatter or otherwise modify the particle distribution functions and in so-doing govern the transport at the microscale level. Thus collisionless plasmas are capable of supporting thin shocks, current sheets which may be prone to magnetic reconnection, and the dissipation of turbulence cascades at kinetic scales. This paper lays the foundation for the accompanying collection that explores the current state of knowledge in this subject. The richness of plasma kinetic phenomena brings with it a rich diversity of microphysics that does not always, if ever, simply mimic classical collision-dominated transport. This can couple the macro- and microscale physics in profound ways, and in ways which thus depend on the astrophysical context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号