首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the thermal emission from the cometary dust coma can be used to derive the rate of dust production from the nucleus as well as the size distribution of absorbing grains. More than ten short-period comets have now been observed in the infrared over a wide range in heliocentric distance. Dust production rates are derived for these comets based on theoretical models of the thermal emission from small absorbing grains and calculations of dust grain velocities. The mean size and albedo of the dust grains is similar in these comets, with the exception of Comet Crommelin, which seems to have had larger, darker grains.  相似文献   

2.
A model is created to describe the effects of “fluff” on the potential and electric field on and close to a charged spherical body embedded in a plasma. The consequences are investigated for dust grains biased at positive or negative potentials, but large enough for electron or ion field emission to be active, especially grains in magnetospheric plasmas. Electron emission reduces the floating potential, whereas ion emission destroys the fluff or even the grain itself. Effects of encounters are discussed. The model also characterizes the levitation of small solid particles from larger bodies.  相似文献   

3.
In laboratory investigations with fluffy, highly porous ice and ice-dust bodies a new mechanism could be identified which strengthens the porous bodies. The process takes place under isothermal conditions and leads to the formation of ice bridges between the ice (dust) particles. It is driven solely by the dependence of the partial pressure of water vapour on the curvature of the particles. This mechanism is generally called “sintering”. A theory for the crushing strength of a porous ice and ice-dust agglomerate is developed which describes the experimental results on isothermal changes is strength due to sintering quantitatively well. The relevance for the evolution of comets is discussed.  相似文献   

4.
Interstellar dust models, previously constrained only from the extinction curve, have been radically changed with the arrival of IRAS observations of the dust infrared emission. An important component of interstellar dust is likely to be made of small particles that show a fluctuating temperature upon impinging single photons and which can produce large near and mid infrared excesses ubiquitously observed in the Galaxy and external galaxies. The analysis of COBE data should soon improve our understanding of dust infrared emissivity and particularly for big grains in the submillimeter domain. We will discuss the key observations (spectral features, broad-band colors, correlations with gas tracers…) which put the best constraints on any dust models and show that the next generation of IR/submm satellites (ISO, SIRTF…) should improve our knowledge of interstellar dust composition and the dust redistribution of the stellar energy inside galaxies.  相似文献   

5.
The average mass of dust per volume in space equals that of the solar wind so that the interplanetary medium should provide an obvious region to study dust plasma interactions. While dust collective behavior is typically not observed in the interplanetary medium, the dust component rather consists of isolated grains screened by and interacting with the plasma. Space measurements have revealed several phenomena possibly resulting from dust plasma interactions, but most of the dust plasma interactions are at present not quantified. Examples are the production of neutrals and pick-up ions from the dust, dust impact generated field variations at spacecraft and magnetic field variations possibly caused by solar wind interacting with dust trails. Since dust particles carry a surface charge, they are exposed to the Lorentz force in the interplanetary magnetic field and for grains of sub-micrometer sizes acceleration can be substantial.  相似文献   

6.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio.  相似文献   

7.
Many asteroids show indications they have undergone impacts with meteoroid particles having radii between 0.01 m and 1 m. During such impacts, small dust grains will be ejected at the impact site. The possibility of these dust grains (with radii greater than 2.2 μm) forming a halo around a spherical asteroid (such as Ceres) is investigated using standard numerical integration techniques. The orbital elements, positions, and velocities are determined for particles with varying radii taking into account both the influence of gravity, radiation pressure, and the interplanetary magnetic field (for charged particles). Under the influence of these forces it is found that dust grains (under the appropriate conditions) can be injected into orbits with lifetimes in excess of one year. The lifetime of the orbits is shown to be highly dependent on the location of the ejection point as well as the angle between the surface normal and the ejection path. It is also shown that only particles ejected within 10° relative to the surface tangential survive more than a few hours and that the longest-lived particles originate along a line perpendicular to the Ceres-Sun line.  相似文献   

8.
The properties of dust ejecta from Comet Halley are studied on the basis of (a) evidence from the comet's past apparitions and (b) analogy with recent, physically similar comets. Specifically discussed are the light curve and spectrum, discrete phenomena in the head, the physical properties of the nucleus (size, albedo, rotation, surface temperature, and morphology), and an interaction between the nucleus and dust atmosphere. Also reviewed are constraints on the size and mass distributions of dust particles, information on submicron-size and submillimeter-size grains from the comet's dust tail and antitail, and the apparent existence of more than one particle type. Similarities between the jet patterns of Halley and the parent comet of the Perseid meteor stream are depicted, and effects of the surface heterogeneity (discrete active regions) on the dust flow are assessed. Current dust models for Halley are summarized and the existence of short-term variations in the dust content in the comet's atmosphere is suggested.  相似文献   

9.
The charged dust particles can be mobilized electrostatically by the repulsion between the adjacent grains and the surface electric field due to the incoming electron current and the charge accumulation within the micro-cavities. In this study, the experimental results of the initial vertical launching velocities and the maximum dust heights are compared with the estimated values for the lofted spherical dust grains by the patch surface charging equations. Silica particles with the sizes between <6 and 45?µm in radius are loaded on a graphite plate, and they are exposed to the electron beam with 450?eV energy under 4?×?10?3?Pa vacuum chamber pressure. During the first set of the experiments, the dust samples are tested without an initial compression process and an additional horizontal electric field. Second, the dust samples are compressed by two different weights in order to increase the packing density under approximately 780.7?Pa and 3780?Pa. Finally, the dust grains are placed between the two parallel aluminum plates to apply approximately 2000?V/m and 4800?V/m horizontal electric field. A high-speed camera is used to record the transportation of the dust grains together with a microscopic telescope, and the results point out that the patch surface dust-charging model estimations are in agreement with the first experiments. On the other hand, the dust particles from the compressed samples are lofted with higher velocities than the estimations, and the number of the dust lofting observations decreases significantly, which demonstrates the importance of the micro-cavities and the increased charging requirement to overcome the contact forces. When the horizontal electric field is present, the initial vertical launching velocities are measured to be lower than the other experiments, which can be attributed to the decreased charging requirement for the dust lofting as a result of inter-particle collisions and rolling motion. According to the experimental results, the electrostatic dust transportation can be controlled not only by the ambient plasma and the solar irradiation on the airless planetary bodies, but also by the surface properties such as the contact surfaces between the dust grains, the number of the micro-cavities related to the packing density, and the presence of the horizontal electric field contributing to the external forces by other particle motions.  相似文献   

10.
It is shown that if the dust is present in the hot intergalactic gas, the galaxy cluster must be very bright source of far infrared emission. This emission can be observed by modern IR astronomy methods. At the same time, taking realistic assumptions about the intergalactic dust nature, it is impossible to explain negative results of the attempts made at observational detecting the Sunyaev-Zel'dovich effect in the centimeter wavelength region as the compensation of the expected decrements by the dust grains emission.  相似文献   

11.
The Giotto, Vega-1 and Vega-2 spacecraft flew through the environment of comet Halley at a relatively close range with velocities of the order of 70–80 km/s. The fore sections of their surface were bombarded by neutral molecules and dust grains which caused the emission of secondary electrons and sputtered ions. This paper makes use of the secondary electron current measurements performed on Vega-1 to infer some characteristic features of the cometary atmosphere. The total gas production rate is estimated to be of the order of 1030 molecules/s and is found to vary with time; the presence of a major jet is also detected at closest approach.  相似文献   

12.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

13.
An analytic model for the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum is presented. It is shown that the dust grain executes oscillatory trajectories, and an expression is derived for the period of oscillation. Simulations used to verify the analytic expression also show that because the trajectories are unstable, dust grains are either ejected from the crater’s vicinity or deposited into the crater forming “dust ponds.” The model also applies to other airless bodies in the solar system, such as asteroids, and predicts that under certain conditions, particularly near lunar sunset, oscillating dust “canopies” or “swarms” will form over negatively charged craters.  相似文献   

14.
月尘运动是月球探测器软着陆过程中不可或缺的重要环节,针对发动机羽流作用下月尘运动真实感不强和月尘颗粒运动模型过于简单的问题,提出了一种逼真的实时月尘运动仿真方法.通过计算流体动力学(CFD, Computational Fluid Dynamics)和二次谢别德插值(Quadratic Shepard)方法,分析和计算单个月尘颗粒的运动学模型,得到一定初始条件下粒子运动的二维轨迹曲线;通过分析粒子的数量、初始位置、初始速度、生命周期等参数对粒子运动学的影响和变化规律,抽象出月尘系统的粒子集;建立基于月尘粒子集的月尘运动模型.实验结果显示:该运动模型逼真的模拟了发动机羽流作用下月尘腾起、飞溅、弥漫、消散等运动过程,视觉真实感和实时性能良好,对研究真空环境中的月尘运动及月球软着陆等相关领域具有一定的参考意义.目前该方法已应用于北航虚拟现实国家重点实验室月球软着陆仿真系统.  相似文献   

15.
The thermal emission from the dust coma of a comet can be analyzed to yield the flux and size distribution of the dust grains and the relative abundance of silicate and absorbing grains.  相似文献   

16.
Dust rings have been observed around each of the giant planets and may also exist around Mars. The particles comprising these rings have short lifetimes due to a number of processes including exospheric and plasma drag, Poynting-Robertson drag, sputtering, collision with other circumplanetary particles, and the Lorentz force for charged grains. The supply of dust is maintained by collisions between macroscopic ring particles and bombardment of moons and ring particles by interplanetary impactors. All of the processes that act to remove or alter the circumplanetary dust grains are functions of particle size, so the initial size distribution of the grains released from an impact onto a moon or ring particle is modified. The size distribution of the impact ejecta can be described by a power-law of the form n(r)drrqdr where n(r)dr is the number of particles in the size range [r,r + dr] and q is the power-law index. For hypervelocity impact excavation, q ≈ 3.5. Drag acts more efficiently on smaller grains resulting in a reduction in q of 1. Other dynamical processes can lead to particle-size dependent collision rates with other circumplanetary objects. These processes can lead to local steepening of the size distribution (increase in q) and to truncation of the dust size distribution to a narrow range of sizes.  相似文献   

17.
Highlights of infrared observations of the dust are discussed and compared with first results from the space probes. An emission feature was detected at 3.4 μm; the 10 and 20 μm silicate features were well-observed; and far-infrared data out to 160 μm were obtained. Organic material seems to be abundant in grains and may explain the 3.4 μm emission. Calculations are presented for one example of organic material. A component of the grains may volatize at temperatures around 300 K.  相似文献   

18.
A preliminary analysis of infrared observations of comets P/Crommelin and P/Tempel 1 is presented. Comet P/Crommelin was observed from UKIRT over the range 1–20 micron, using standard filters. From the shape of the thermal emission spectrum, the temperature of the dust grains is estimated (T = 314 ± 3344K) and also the dust production rate (1.3 × 105gs?1). Comet P/Tempel 1 was observed with the Infrared Astronomical Satellite (IRAS). The emission is found to be considerably extended and there is also evidence for temperature variation of the dust grains as indicated by the 12 to 25 micron flux ratio.  相似文献   

19.
A preliminary analysis of the dust emission from comet Halley is presented based on large scale observations of its dust tail. Selected images obtained between February 22 and May 10, 1986 are compared to synchrone-syndyne graphs to infer the history of the dust production and the properties of the dust, at least qualitatively. Quantitative modeling of the dust tall has also been initiated and preliminary results are shown for the cases of isotropic and anisotropic (jet) dust production.  相似文献   

20.
"Quenched Carbonaceous Composites (QCCs)" are carbonaceous interstellar dust analogues synthesized in the laboratory from a hydrocarbon plasma. We produced new types of carbonaceous condensates from the ejecta of plasma with mixtures of methane and hydrogen as source gases. We find that QCC with an absorbance peak at 220 nm is composed of onion-like spherules, and QCCs with an absorbance peak at 230-240 nm are composed of polyhedral particles. The onion-like QCC contains aromatic hydrogen bonds, and it shows the 3.3 and 11.4 micrometers absorption bands. The QCC with an absorbance peak at 230-240 nm is composed of ribbons with bent graphitic layers. This suggests that the carrier of the interstellar 220 nm extinction band might also be an emitter of the interstellar diffuse emission bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号