首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this first part of our paper, it is suggested to use solutions to boundary value problems in the optimization problems (in impulse formulation) for spacecraft trajectories in order to obtain the initial approximation, when boundary value problems of the maximum principle are solved numerically by the shooting method. The technique suggested is applied to the problems of optimal control over motion of the center of mass of a spacecraft controlled by the thrust vector of jet engine with limited thrust in an arbitrary gravitational field in a vacuum. The method is based on a modified (in comparison to the classic scheme) shooting method computation together with the method of continuation along a parameter (maximum reactive acceleration, initial thrust-to-weight ratio, or any other parameter equivalent to them). This technique allows one to obtain the initial approximation with a high precision, and it is applicable to a wide range of optimal control problems solved using the maximum principle, if the impulse formulation makes sense for these problems.  相似文献   

2.
The problem of optimization of interplanetary trajectories is considered for spacecraft with a small-thrust ideally regulated engine. When the maximum principle is used, determination of the optimal trajectory is reduced to solution of a two-point boundary value problem for a system of ordinary differential equations. In order to solve this boundary value problem, the method of continuation in parameter is used, and with the help of it the formal reduction of the boundary value problem to a Cauchy problem is performed. Different variants of the continuation method are considered, including the method of continuation in the gravitational parameter which allows one to find extreme trajectories with a preset angular distance. The issues of numerical realization of the continuation method are discussed, and numerical examples of its use for solving the problems of optimization of interplanetary trajectories are presented.  相似文献   

3.
A complete first-order analytical solution is developed for the problem of optimum low-thrust limited power transfers between neighbouring elliptic non-equatorial orbits in a non-central gravity field. The optimization problem is formulated as a Mayer problem of optimal control with Cartesian elements as state variables. After applying the Pontryagin maximum principle and determining the optimal thrust acceleration, an intrinsic canonical transformation is performed: the Cartesian elements are changed by suitable orbital elements. Hori's method is applied in determining a first-order analytical solution. Simple analytical solutions are obtained explicitly for long-time transfers.  相似文献   

4.
Akhmetshin  R. Z. 《Cosmic Research》2004,42(3):238-249
Low-thrust flights from high-elliptic orbits are of considerable interest, since they allow one to decrease (compared to high-thrust flights) the propulsion consumption and to reduce the flight duration. At the same time, in comparison with the spiral unwinding flights from low near-circular orbits, this scheme minimizes the harmful effect of the radiation belts. Based on the maximum principle, the problem of optimization is reduced to a two-point boundary value problem, which is solved numerically using the modified Newton method. A method is suggested to obtain the initial approximation for solving the boundary value problem. The method takes advantage of the idea of transition from an approximately optimal trajectory to the optimal one. Two problems, which have different low-thrust models, are considered: one with permanently acting low thrust and the other with the possibility of turning it on/off. In both cases no restrictions are imposed on the thrust direction. A comparison of these problems is made. We investigated (i) what gain in the final mass can be attained when passing from the first to the second problem, (ii) at the cost of what loss in flight duration this can be achieved, and (iii) what changes in the optimal program of control must be done in this case.  相似文献   

5.
Low-thrust electric propulsion is increasingly being used for spacecraft missions primarily due to its high propellant efficiency. As a result, a simple and fast method for low-thrust trajectory optimization is of great value for preliminary mission planning. However, few low-thrust trajectory tools are appropriate for preliminary mission design studies. The method presented in this paper provides quick and accurate solutions for a wide range of transfers by using numerical orbital averaging to improve solution convergence and include orbital perturbations. Thus, preliminary trajectories can be obtained for transfers which involve many revolutions about the primary body. This method considers minimum fuel transfers using first-order averaging to obtain the fuel optimum rates of change of the equinoctial orbital elements in terms of each other and the Lagrange multipliers. Constraints on thrust and power, as well as minimum periapsis, are implemented and the equations are averaged numerically using a Gausian quadrature. The use of numerical averaging allows for more complex orbital perturbations to be added in the future without great difficulty. The effects of zonal gravity harmonics, solar radiation pressure, and thrust limitations due to shadowing are included in this study. The solution to a transfer which minimizes the square of the thrust magnitude is used as a preliminary guess for the minimum fuel problem, thus allowing for faster convergence to a wider range of problems. Results from this model are shown to provide a reduction in propellant mass required over previous minimum fuel solutions.  相似文献   

6.
能量最省有限推力同平面轨道转移   总被引:13,自引:5,他引:13  
  相似文献   

7.
The problem of optimal control over many-revolution spacecraft orbit transfers between circular coplanar orbits of satellites is considered. The spacecraft flight is controlled by a thrust vector of a jet engine with restricted thrust (JERT). The mass expenditure is minimized at a limited time of flight. The optimal control problem is solved based on the maximum principle. The boundary value problem of the maximum principle is solved numerically using the shooting method. A modified computation scheme of the shooting method is suggested (multi-point shooting), as well as a method (correlated with the scheme) of choosing the initial approximation with the use of a solution to the optimization problem in the impulse formulation. The scheme and method allow one to construct many-revolution spacecraft orbit transfers.  相似文献   

8.
The problem of optimization of a spacecraft transfer to the Apophis asteroid is investigated. The scheme of transfer under analysis includes a geocentric stage of boosting the spacecraft with high thrust, a heliocentric stage of control by a low thrust engine, and a stage of deceleration with injection to an orbit of the asteroid’s satellite. In doing this, the problem of optimal control is solved for cases of ideal and piecewise-constant low thrust, and the optimal magnitude and direction of spacecraft’s hyperbolic velocity “at infinity” during departure from the Earth are determined. The spacecraft trajectories are found based on a specially developed comprehensive method of optimization. This method combines the method of dynamic programming at the first stage of analysis and the Pontryagin maximum principle at the concluding stage, together with the parameter continuation method. The estimates are obtained for the spacecraft’s final mass and for the payload mass that can be delivered to the asteroid using the Soyuz-Fregat carrier launcher.  相似文献   

9.
Approximate numerical methods of optimization are presented for multi-orbit noncoplanar orbit transfers of low-thrust spacecraft. The linear representation of derivatives of boundary parameters is used in the vicinity of a reference trajectory with its discretization into small segments. For each segment a set of pseudo-impulses is introduced, representing possible directions of the thrust vector. In order to solve essentially nonlinear problems, the iterative process of upgrading the reference trajectory is used. At each iteration the linear programming problem of high dimensionality is solved, its boundary conditions being represented in the form of a linear matrix equation. Interval constraints are considered in the form of blocking the propulsion system operation on shadow segments of the orbit, as well as cycling constraints, and constraints on total duration of maneuvers at certain trajectory segments. The results of comparison with solutions obtained by other methods are presented together with examples illustrating the convergence of iterative processes. Optimizations of the trajectories for launching geosynchronous satellites to their orbits and of the trajectories of a noncoplanar transfer from low to high-elliptic Molniya orbit are considered under these constraints.  相似文献   

10.
Trajectories of spacecraft with electro-jet low-thrust engines are studied for missions planning to deliver samples of matter from small bodies of the Solar System: asteroids Vesta and Fortuna, and Martian moon Phobos. Flight trajectories are analyzed for the mission to Phobos, the limits of optimization of payload spacecraft mass delivered to it are determined, and an estimate is given to losses in the payload mass when a low-thrust engine with constant outflow velocity is used. The model of an engine with ideally regulated low thrust is demonstrated to be convenient for calculations and analysis of flight trajectories of a low-thrust spacecraft.  相似文献   

11.
The problem of optimal low-thrust, limited power transfer between quasi-circular orbits (e 0) around an oblate planet is analysed. It is assumed that the orbital changes due to thrust acceleration and Earth oblateness are of the same order. A first order solution to the problem is obtained by application of Pontryagin's Maximum Principle. Subsequently, by application of Hori's method for generalized canonical systems, a first order solution in a small parameter ε is derived. Finally, three particular cases of long-time transfer and the orbit maintenance manoeuvre are considered. The results obtained are in agreement and represent an extension of the work done by Marec.  相似文献   

12.
A low-energy, low-thrust transfer between two halo orbits associated with two coupled three-body systems is studied in this paper. The transfer is composed of a ballistic departure, a ballistic insertion and a powered phase using low-thrust propulsion to connect these two trajectories. The ballistic departure and insertion are computed by constructing the unstable and stable invariant manifolds of the corresponding halo orbits, and a complete low-energy transfer based on the patched invariant manifolds is optimized using the particle swarm optimization (PSO) algorithm on the criterion of smallest velocity discontinuity and limited position discontinuity (less than 1 km). Then, the result is expropriated as the boundary conditions for the subsequent low-thrust trajectory design. The fuel-optimal problem is formulated using the calculus of variations and Pontryagin's Maximum Principle in a complete four-body dynamical environment. Then, a typical bang–bang control is derived and solved using the indirect method combined with a homotopic technique. The contributions of the present work mainly consist of two points. Firstly, the global search method proposed in this paper is simply handled using the PSO algorithm, a number of feasible solutions in a fairly wide range can be delivered without a priori or perfect knowledge of the transfers. Secondly, the indirect optimization method is used in the low-thrust trajectory design and the derivations of the first-order necessary conditions are simplified with a modified controlled, restricted four-body model.  相似文献   

13.
Optimization of Multi-Orbit Transfers between Noncoplanar Elliptic Orbits   总被引:1,自引:0,他引:1  
Petukhov  V. G. 《Cosmic Research》2004,42(3):250-268
Using the maximum principle formalism, the problem of optimizing interorbital transfer between two noncoplanar elliptic orbits is reduced to solution of a boundary value problem for a system of ordinary differential equations. In order to solve the resulting boundary value problem numerically, the numerical homotopic method or modified Newton's method is used. When solving the boundary value problem, the right-hand sides of differential equations of motion are averaged numerically. Efficient software is developed, and a large number of optimal trajectories are calculated using it. As a result of analysis of these numerical data, new high-quality results are obtained. Specifically, a bifurcation of optimal solutions is found, the existence of critical inclination is demonstrated, and a partial classification of the structure of optimal control is performed.  相似文献   

14.
结合行星借力飞行技术的小推力转移轨道初始设计   总被引:1,自引:0,他引:1  
针对结合行星借力和小推力技术的行星际转移轨道设计问题,提出一种基于形状逼近策略的初始设计方法。采用改进的逆六次多项式策略计算小推力弧段,通过引入B平面参数和推进器开关点时间系数实现行星借力和推滑混合轨道的拼接,将初始设计问题转化为求解混合整数非线性规划问题。为降低规划模型求解难度,通过参数变换对模型进行简化处理,并采用具有全局大范围搜索能力的改进微分进化算法求解最优设计参数。数值结果表明:相比正弦指数曲线设计方法,本文方法可以有效对交会型转移轨道进行设计,并且可以提供更少燃料消耗的探测机会。
  相似文献   

15.
提出了一种新的使用变推力火箭发动机实现月球定点软着陆制导的优化方法.在软着陆加速度抛物线(即二次函数)变化的条件下,通过一组代数方程连接初始条件和终端条件,避免了求解两点边值问题的迭代计算.给出了瞬时位置速度状态参数以及需要推力加速度、推力和秒流量的计算公式,并通过调整总飞行时间和着陆点位置实现了燃料消耗最小的优化处理.算例结果证明了这种方法的可行性和有效性.  相似文献   

16.
Tychina  P. A.  Egorov  V. A.  Sazonov  V. V. 《Cosmic Research》2002,40(3):255-263
The trajectories of the fastest flight of a spacecraft (SC) with a solar sail from the Earth's sphere of activity to the Martian sphere of activity including the section of a perturbation maneuver near Venus are investigated. The planetary spheres of activity are assumed to be point-like; i.e., the maneuver section and the initial and final positions of the SC coincide with the corresponding positions of the planets. The initial velocity of the SC is assumed to be equal to the Earth's velocity, so that no leveling of the velocities of the SC and Mars in the final point of the flight is required. The perturbation maneuver is considered as a jump of the heliocentric velocity of the SC at the point of its contact with Venus, which does not change the magnitude of its Venus-centric velocity. The orbits of planets are assumed to be circular and coplanar; the SC trajectory lies at the plane of these orbits. The sail is planar with a specularly reflecting surface. The trajectories of optimum flights are determined as a result of solving the boundary value problem of the Pontryagin maximum principle. The families of solutions to this problem depending on the initial angular positions of Venus and Mars are constructed by the method of continuation over a parameter.  相似文献   

17.
A high order optimal control strategy is proposed in this work, based on the use of differential algebraic techniques. In the frame of orbital mechanics, differential algebra allows to represent, by high order Taylor polynomials, the dependency of the spacecraft state on initial conditions and environmental parameters. The resulting polynomials can be manipulated to obtain the high order expansion of the solution of two-point boundary value problems. Since the optimal control problem can be reduced to a two-point boundary value problem, differential algebra is used to compute the high order expansion of the solution of the optimal control problem about a reference trajectory. Whenever perturbations in the nominal conditions occur, new optimal control laws for perturbed initial and final states are obtained by the mere evaluation of polynomials. The performances of the method are assessed on lunar landing, rendezvous maneuvers, and a low-thrust Earth–Mars transfer.  相似文献   

18.
This paper presentes the results of an algorithm developed at INTELSAT to (1) synthesize suboptimal, two-burn midlevel thrust, LEO-GEO transfer trajectories; (2) define practical steering laws to approximate the nominal trajectories; and (3) simulate their performance. Capabilities of the algorithm include: independently selectable constant thrust levels for the two burns, constant acceleration, staging, fixing the mass at either ends of the transfer. Figures of inefficiency versus ideally impulsive transfer are plotted for a reference constant thrust case over a range of initial accelerations. The diagram indicates that acceptable inefficiencies are attainable in the initial acceleration range above 0.1 g. A comparison with an optimal two-burn low-thrust transfer indicates negligible degradation in efficiency. The results of an application to INTELSAT VI are included.  相似文献   

19.
基于退火遗传算法的小推力轨道优化问题研究   总被引:3,自引:2,他引:3  
任远  崔平远  栾恩杰 《宇航学报》2007,28(1):162-166,202
利用退火遗传算法解决小推力轨道优化问题。首先利用传统混合法将轨道优化问题归结为受非线性方程约束的参数优化问题。通过结合退火和随机惩罚函数对约束条件进行处理后,用遗传算法求解这个参数优化问题。最后再采用局部优化算法提高解的精度。这种算法既保持了传统混合法精度高、解轨线光滑的优点,又克服了传统轨道优化方法收敛性差、初始猜测困难、容易陷入局部极小解的缺点。在本文的最后,利用文中提出的轨道优化算法求解“喷-停-喷”型定常推力幅值地球-木星轨道转移问题。算例证明此算法可以有效地求解小推力轨道转移问题,尤其适用于传统轨道优化方法难以求解的复杂轨道优化问题。  相似文献   

20.
冯维明  李源  苗楠 《固体火箭技术》2012,35(3):285-289,295
通过将小推力展开为偏近点角的傅立叶级数,并对高斯摄动方程在一个轨道周期上的平均,将原方程的推力转化为仅由14个傅立叶系数表示的控制变量。仿真计算表明,平均化后的高斯方程使计算量与牛顿积分相比显著减少,且对小推力而言有足够的精度。对利用平均化后的高斯方程计算轨道根数时产生误差的原因进行了研究,并进一步分析小推力的范围和小推力近似表达式对上述误差的影响,为今后小推力下非开普勒轨道动力学分析提供了理论依据和参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号