首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.  相似文献   

2.
3.
《Acta Astronautica》2013,82(2):411-418
The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.  相似文献   

4.
This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.  相似文献   

5.
6.
With the development of several key technologies, nanosatellites are emerging as important vehicles for carrying out technology demonstrations and space science research. Nanosatellites are attractive for several reasons, the most important being that they do not involve the prohibitive costs of a conventional satellite launch. One key enabling technology is in the area of battery technology. In this paper, we focus on the characterization of battery technologies suitable for nanosatellites.Several battery chemistries are examined in order to find a type suitable for typical nanosatellite missions. As a baseline mission, we examine York University's 1U CubeSat mission for its power budget and power requirements. Several types of commercially available batteries are examined for their applicability to CubeSat missions. We also describe the procedures and results from a series of environmental tests for a set of Lithium Polymer batteries from two manufacturers.  相似文献   

7.
谢平  杜永浩  姚锋  谭跃进 《宇航学报》2019,40(2):127-138
针对现代卫星载荷能力与机动能力不断提升以及卫星任务需求多样化与复杂化程度持续增加的现状,阐述了敏捷成像卫星调度问题的基本特征,给出了敏捷成像卫星调度问题的一般化描述方法。在此基础上,分别从自主感知、自主决策和自主协同三个方面梳理了国内外敏捷卫星自主调度关键技术的研究进展。最后,面向未来卫星技术发展需求,指出了敏捷成像卫星自主调度技术进一步的研究方向。  相似文献   

8.
The idea for using the International Space Station (ISS) as a platform for exploration has matured in the past few years and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed in cislunar space providing immediate benefits and flexibility for future exploration missions.We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low Earth orbit. Life support systems and other technologies developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecrafts. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how the use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.  相似文献   

9.
Building upon the important experience acquired with the development of the International Space Station, the major spacefaring countries are working within the International Space Exploration Coordination Group (ISECG) at the definition of a coordinated framework for expanding the human presence beyond the Low Earth Orbit, the Global Exploration Roadmap (GER). The GER defines a long-range strategy for global exploration and include three major elements.
  • •Common goals of ISECG participating agencies for space exploration.
  • •Notional mission scenarios which are technically feasible and programmatically implementable. Two mission scenarios were defined in the 1st iteration of the GER: the “Asteroid Next” and the “Moon Next” mission scenarios.
  • •Identification of near-term opportunities for coordination and cooperation related to e.g. the development of technologies, the implementation of robotic missions to destination of interest for closing strategic knowledge gaps which need to be addressed prior to human missions as well as the utilization of ISS for demonstration of exploration enabling capabilities.
In 2009 two studies have been awarded by ESA to Industrial Teams led by Thales Alenia Space—Italy and by Astrium—Germany to define, analyze and assess optional European scenarios for future human spaceflight and exploration activities, and to derive the required capabilities for the investigated timeframe until the year 2033. Work on the European scenarios has been aligned with and informed by the international work on the GER.A conceptual design of different Building Block Elements, representing critical contributions to international Design Reference Missions (DRM's) included in the ISECG GER, has been performed and analyzed with respect to programmatic risks, budgets and required technologies. Key driving requirements for the analyzed Building Block elements have been derived from the international DRM's included in the GER.The interim outcomes of the human exploration scenario study will be presented, identifying opportunities for European Contributions to an international exploration undertaking.  相似文献   

10.
小行星俘获(ACR)任务是美国Keck空间研究中心发起的一项深空探测任务。该任务计划选定一颗近地小行星,通过口袋式抓捕系统对其实施抓捕,并于2025年左右将其带回近月空间。文章介绍了ACR任务的内容和系统设计,具体包括:航天器总体构型、抓捕分系统、探测识别分系统和控制与推进分系统;对小行星抓捕的目标探测与识别、旋转匹配、抓捕、消旋、轨道转移等核心操作。基于ACR任务,提出了空间目标俘获技术的需求与应用、抓捕航天器系统设计的启示;基于我国目前的技术研究情况,总结分析了发展空间目标俘获任务所需的关键技术,如大功率柔性太阳翼、长时间大范围轨道机动、目标探测与识别、快速机动、目标抓捕与消旋。  相似文献   

11.
The human exploration of multiple deep space destinations (e.g. Cis-Lunar, NEAs), in view of the final challenge of sending astronauts to Mars, represents a current and consistent study domain especially in terms of its possible scenarios and mission architectures assessments, as proved by the numerous on-going activities about this topic and moreover by the global exploration roadmap. After exploring and analysing different possible solutions to identify the most flexible path, a detailed characterisation of several Design Reference Missions (DRMs) represents a necessity in order to evaluate the feasibility and affordability of deep space exploration missions, specifically in terms of enabling technological capabilities.The study presented in this paper was aimed at defining an evolutionary scenario for deep space exploration in the next 30 years with the final goal of sending astronauts on the surface of Mars by the end of 2030 decade. Different destinations were considered as targets to build the human exploration scenario, with particular attention to Earth–Moon Lagrangian points, NEA and Moon. For all the destinations selected as part of the exploration scenario, the assessment and characterisation of the relative Design Reference Missions were performed. Specifically they were defined in terms of strategies, architectures and mission elements. All the analyses were based on a pure technical approach with the objective of evaluating the feasibility of a long term strategy for capabilities achievement and technological development to enable future space exploration.This paper describes the process that was followed within the study, focusing on the adopted methodology, and reports the major obtained results, in terms of scenario and mission analysis.  相似文献   

12.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

13.
With rich experience of the successful Indian remote sensing satellite series, Indian Space Research Organization (ISRO) has started theme-based satellites like Resourcesat and Oceansat. Further taking the advantage of the improved technologies in areas of miniaturization, the micro- and mini-satellite series have been started, which will provide opportunity for the payloads of stand-alone missions, for applications, study or research. These include payloads for Earth imaging, atmospheric monitoring, ocean monitoring, scientific applications, and stellar observation. The micro-satellites are of 100 kg class, planned with a payload of about 30 kg and 20 W power and mini-satellites of 450 kg class for payloads of 200 kg and power of 200 W. The first satellite in the micro-satellite series is an Earth imaging payload followed by the second satellite with scientific payloads with the participation of students. Further the scientific proposals for micro-satellites are under evaluation. Similarly the first two missions of mini-satellites are defined with first one carrying ocean and environment monitoring payloads followed by the Earth imaging satellite with multi-spectral camera with 700 km swath. The current paper touches upon the technology involved in realization of the micro- and mini-satellites and the scope of applications of the series.  相似文献   

14.
Roadmap to a human Mars mission   总被引:1,自引:0,他引:1  
We propose a new roadmap for the preparation of the first human mission to Mars. This proposal is based on the work of ISECG and several recent recommendations on human Mars mission architectures. A table is proposed to compare the possible benefits of different preparatory missions. Particular attention is paid to the possibility of qualifying important systems thanks to a heavy Mars sample return mission. It is shown that this mission is mandatory for the qualification of Mars aerocapture at scale-1, EDL systems at scale 1 and Mars ascent. Moreover, it is a good opportunity to test many other systems, such as the heavy launcher and the transportation systems for the trips beyond LEO. These tests were not mentioned in the last ISECG report. This strategy is facilitated in the case of the simplified Mars mission scenarios that have recently been presented because it is suggested that relatively small vehicles with small crew sizes are used in order to optimize the payload mass fraction of the landing vehicles and to avoid the LEO assembly. An important finding of the study is that a human mission to the surface of the Moon is not required for the qualification of the systems of a human mission to Mars. Since affordability is a key criterion, two important missions are proposed in the roadmap. The first is a heavy Mars sample return mission and the second is a manned mission to a high Earth orbit or eventually to the vicinity of the Moon. It is shown that both missions are complementary and sufficient to qualify all the critical systems of the Mars mission.  相似文献   

15.
CubeSats and small satellites have potential to provide means to explore space and to perform science in a more affordable way. As the goals for these spacecraft become more ambitious in space exploration, moving from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) or further, the communication systems currently implemented will not be able to support those missions. One of the bottlenecks in small spacecraft communication systems is represented by antennas' size, due to the close relation between antenna gain and dimensions. Current antennas for CubeSats are mostly dipole or patch antennas with limited gain. Deployable (not inflatable) antennas for CubeSats are currently being investigated, but these solutions are affected by the challenge of packaging the whole deployable structure in a small spacecraft.The work that we propose represents the first attempt to develop an inflatable antenna for CubeSats. Inflatable structures and antennas can be packaged efficiently occupying a small amount of space, and they can provide, once deployed, large dish dimension and correspondent gain. Inflatable antennas have been previously tested in space (Inflatable Antenna Experiment, STS-77). However they have never been developed for small spacecraft such as CubeSats, where the packaging efficiency, the deployment, and the inflation represent a challenge.Our study explores for the first time the possibility of developing such antenna in a way compatible with CubeSat dimensions and constraints. The research provides answers on the possible dimensions for an inflatable antenna for small satellites, on the gain and resolution that can be achieved, and on the deployment and inflation mechanism compatible with CubeSat. Future work in the development of the antenna will include the test of the antenna in flight during a specific technical demonstration mission.The article is structured as follows: context and motivation for Cubesat inflatable antenna are described; then a study to design the antenna which achieves the required performance metrics, while respecting the constraints imposed by CubeSat structure, is presented.  相似文献   

16.
The very first activities concerning planetary rovers began in 1964 in the Soviet Union and in the United States for lunar missions. Nowadays, with the increase of new mission needs and technical possibilities, several space agencies have engaged in some preliminary programmes in that area with the following objectives:

• —to prepare their involvement in future international rover missions

• —to ease contacts/discussions between scientists and engineers

• —to study and develop a new generation of in situ experiments

• —to perform system/mission analysis in conjunction with the definition of the mission objectives

• —to analyze robotic problematics and implement robotic concepts in the rover architectures.

To perform these activities, several organizations have been set up in Russia, the United States, Japan, Italy and France, according to the relative weight of space engineering over robotic research.

In the case of the French programme (‘VAP—Automatic Planetary Rover’), the organization is based on a partnership between the CNES, a scientific committee, four national research laboratories and industries in order to optimize scientific and technical work, with an optimal use of past robotic research studies, as well as to generate spin-offs for Earth applications. Indeed, as a preliminary result, we now have a co-operative agreement with Russia to procure cameras and associated software for the autonomous navigation of the Marsokhod 96 and 2 projects for terrestrial applications of robotic concepts defined within the framework of the VAP programme.  相似文献   


17.
R. Eric Dyke  Glenn A. Hrinda   《Acta Astronautica》2007,61(11-12):1029-1042
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.  相似文献   

18.
Japanese moon lander SELENE-2—Present status in 2009   总被引:1,自引:0,他引:1  
JAXA is planning exploration missions to the moon, following upon the Kaguya (SELENE) mission., These missions aim to demonstrate some new technologies, observe the moon scientifically, investigate technical, social and political feasibility of utilizing the moon. For the first step of the missions, the phase A study of SELENE-2 has started from the summer of 2007. This mission will demonstrate the effectiveness of several technologies including precision landing, hazard avoidance, surface mobility, and night survival technologies. In situ geological and geophysical observations will be conducted to improve our knowledge on the origin and the evolution of the moon. Investigating the lunar surface conditions and its potential for in situ resource utilization will provide key information for future human exploration missions. This paper presents the current status of the SELENE-2 mission, its objectives, its design, and other important aspects of its development such as international cooperation.  相似文献   

19.
欧空局目前正在研究今后十年的空间探测任务,这些任务可以分为两大类,一类是具有研究性的地球探测任务,另一类是可供使用的地球观察任务。这些研究要求的卫星质量不同,小的不足1000kg,大的可达3000kg;功率不同,小的不到500W,大的超过1500W;轨道高度也不同,从500km到800km。除降雨量观测任务由于飞行器结构和系统的限制是在低倾角轨道上执行外,其他大部分任务将在太阳同步轨道上执行。  相似文献   

20.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号