首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3–6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.  相似文献   

2.
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations.  相似文献   

3.
火星探测器使命轨道捕获策略研究   总被引:2,自引:0,他引:2  
分析了火星探测器使命轨道捕获策略研究需求,给出了三种可用的典型捕获策略,建立了速度纵向平面内的飞行动力学方程,对三种典型策略进行了飞行动力学仿真,给出了各策略完成捕获所需速度增量、任务耗时及过。通过对仿真结果的分析比较,得出研究结论为:直接制动捕获任务耗时及过载较小,但速度增量需求较大;多次穿越后捕获任务耗时较长,但速度增量需求和过载较小;一次穿越后捕获速度增量需求较小且任务耗时较短,但过载较大。  相似文献   

4.
气动减速技术能在耗费较少燃料的情况下,使探测器顺利进入预定环绕轨道.面向气动减速技术的深空探测器迎风面需要承受较高的气动热负荷与气动力,使得迎风面热控材料的耐热与耐冲击能力成为探测器设计的关键.文章对国外相关应用实例进行了调研和综述,并在此基础上总结了此类深空探测器热控系统的设计特点,可为气动减速技术在我国深空探测任务...  相似文献   

5.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   

6.
《Acta Astronautica》2008,62(11-12):995-1001
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

7.
Rosetta was selected in November 1993 for the ESA Cornerstone 3 mission, to be launched in 2003, dedicated to the exploration of the small bodies of the solar system (asteroids and comets). Following this selection, the Rosetta mission and its spacecraft have been completely reviewed: this paper presents the studies performed the proposed mission and the resulting spacecraft design.

Three mission opportunities have been identified in 2003–2004, allowing rendezvous with a comet. From a single Ariane 5 launch, the transfer to the comet orbit will be supported by planetary gravity assists (two from Earth, one from Venus or Mars); during the transfer sequence, two asteroid fly-bys will occur, allowing first mission science phases. The comet rendezvous will occur 8–9 years after launch; Rosetta will orbit around the comet and the main science mission phase will take place up to the comet perihelion (1–2 years duration).

The spacecraft design is driven (i) by the communication scenario with the Earth and its equipment, (ii) by the autonomy requirements for the long cruise phases which are not supported by the ground stations, (iii) by the solar cells solar array for the electrical power supply and (iv) by the navigation scenario and sensors for cruise, target approach and rendezvous phases. These requirements will be developed and the satellite design will be presented.  相似文献   


8.
A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth–Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth–Venus transfer may be completed within about 380 days.  相似文献   

9.
《Acta Astronautica》2014,93(2):521-533
Hypothetical habitability of some of extrasolar planets is a fundamental question of science. Some of exoplanets possess physical conditions close to those of Venus. Therefore, the planet Venus, with its dense and hot (735 K) oxygen-free atmosphere of CO2, having a high pressure of 9.2 MPa at the surface, can be a natural laboratory for this kind of studies. The only existing data on the planet׳s surface are still the results obtained by the Soviet VENERA landers in the 1970s and 1980s. The TV experiments of Venera-9 and 10 (October, 1975) and Venera-13 and 14 (March, 1982) delivered 41 panoramas of Venus surface (or their fragments). There have not been any similar missions to Venus in the subsequent 39 and 32 years. In the absence of new landing missions to Venus, the VENERA panoramas have been re-processed. The results of these missions are studied anew. A dozen of relatively large objects, from a decimeter to half a meter in size, with an unusual morphology have been found which moved very slowly or changed slightly their shape. Their emergence by chance could hardly be explained by noise. Certain unusual findings that have similar structure were found in different areas of the planet. This paper presents the last results obtained of a search for hypothetical flora and fauna of Venus.  相似文献   

10.
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles’ deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec. 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov. 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.  相似文献   

11.
Current projects of manned missions to Mars are aimed to their realization in the second-third decades of this century. The purpose of this paper is to determine and review the main biomedical problems, that require a first and foremost decision for safety support of extravehicular activity (EVA) carried out by crewmembers of the Mars expedition. To a number of such problems the authors of the paper attribute a creation of adequate EVA equipment intended, first, for assembly of interplanetary spacecraft on the Earth orbit, performance of maintenance operations and scientific researches on the external surface of spacecraft during interplanetary flight and, secondly, for work on the Mars surface. New generation of space suits with low weight, high mobility and acceptable risk of decompression sickness must be as a central component of EVA equipment. The program for preparation to a Mars expedition also has to include special investigations in order to design the means and methods for a reliable protection of crew against space radiation, to elaborate the approach to medical monitoring and primary medical care during autonomous space mission, to maintain good health condition of crewmembers during EVA under the Mars gravity (0.38 g) after super long-term flight in weightlessness.  相似文献   

12.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008–2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974–1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20°S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012–2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.  相似文献   

13.
The Pioneer Venus program consist of two spacecraft: an orbiter and a multiprobe. Both arrived at Venus in early December 1978. The orbiter collected data on the upper atmosphere and fields and particles and sensed the clouds and surface remotely from a 75° inclined orbit. The multiprobe consisted of a bus, three small probes, and a large probe. All five objects entered the Venus atmosphere and transmitted data on its characteristics directly to Earth while descending to the surface. The development of these spacecraft required the solution of many difficult and unique technique problems.  相似文献   

14.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

15.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

16.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

17.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

18.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

19.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   

20.
《Acta Astronautica》2003,52(2-6):203-209
The spacecraft designed to support the ESA Mars Express mission and its science payloads is customized around an existing avionics well suited to environmental and operational constraints of deep-space interplanetary missions. The reuse of the avionics initially developed for the Rosetta cometary program thanks to an adequate ESA cornerstone program budget paves the way for affordable planetary missions.The costs and schedule benefits inherited from reuse of up-to-date avionics solutions validated in the frame of other programs allows to focus design and development efforts of a new mission over the specific areas which requires customization, such as spacecraft configuration and payload resources. This design approach, combined with the implementation of innovative development and management solutions have enabled to provide the Mars Express mission with an highly capable spacecraft for a remarkably low cost. The different spacecraft subsystems are all based on adequate design solutions. The development plan ensures an exhaustive spacecraft verification in order to perform the mission at minimum risk. New management schemes contribute to maintain the mission within its limited funding.Experience and heritage gained on this program will allow industry to propose to Scientists and Agencies high performance, low-cost solutions for the ambitious Mars Exploration Program of the forthcoming decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号