首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-pulse SETI     
While most optical SETI experiments are configured to detect nanosecond pulses, the majority of their counterpart radio searches integrate for seconds to minutes, looking for unchanging narrow-band carriers or slowly pulsed modulation. The former approach is suggested as an effective way to stand out against stellar photon noise, while the latter approach is dictated by the dispersive effects of the interstellar medium as well as the high visibility of narrow-band signal components.In this paper, we consider effective signal strategies for those that produce, rather than simply search for, optical and radio beacons—signals that are designed to elicit responses from technological civilizations. By considering the communication problem from the point of view of the transmitters, rather than the receivers, we deduce some likely signal characteristics for beacons, and concommitant new strategies for SETI.  相似文献   

2.
为实现对非合作星间目标信号的捕获跟踪,提出了一种基于单通道单脉冲跟踪技术的非合作目标中频角跟踪接收机软硬件设计方案。硬件平台设计方案结合了FPGA与DSP在算法处理上的优势,涵盖高速ADC设计、系统时钟设计等。针对非合作星间目标信号的特征,提出了不同调制体制、不同码速率的非合作宽带数据传输信号的检测识别、角误差信号提取与分离方案,涵盖数字预处理、数字信道化、信道判决、信号检测估计、角误差信号提取等处理环节。系统捕获跟踪试验结果表明该非合作目标角跟踪接收机可以完成对多种调制体制(BPSK、QPSK、SQPSK等载波相位调制)、不同码速率(1kbps~300Mbps)的非合作宽带数据传输信号的角误差信号提取与分离,载频估计精度优于100kHz,码速率估计精度优于100kbps。本系统可实现对非合作目标信号的有效跟踪,为开展非合作目标角跟踪接收机的工程化研究奠定了扎实基础。  相似文献   

3.
The nature of a SETI search makes observations uniquely vulnerable to radio frequency interference because the frequency of a possible ETI signal is unknown. Sensitive radio telescopes, sophisticated software and enhanced signal detection equipment are employed to detect faint signals in the 1–3 GHz frequency range. Frequency management at SETI occurs within a policy environment of the ITU spectrum allocation process. Increased demand by commercial satellite services for access to spectrum adjacent to bandwidth allocated to radio astronomy creates severe international and domestic pressures on SETI observations. Strategies for addressing the RFI problem at the international level will be discussed that include a contingency ITU allocation plan for exclusive use of a particular frequency range by SETI in the event a signal is detected. The lunar farside is, by international agreement, a radio quiet zone for use by radio astronomers. Protected from most human-generated emissions, a SETI radio telescope array on the lunar farside would provide reliable data with minimum interference.  相似文献   

4.
突发通信信号的降维检测方法及带宽参数分析   总被引:1,自引:0,他引:1  
胡亚  吴嗣亮 《宇航学报》2012,33(9):1295-1300
在突发通信信号检测中,在频率、带宽进行二维搜索的检测方法计算量大,提出了可减少计算量的降维检测方法,该方法在单一检测带宽下进行频率搜索检测突发通信信号。对其带宽参数选择进行了分析。理论计算和仿真表明,降维检测器用于单一速率信号检测时,当检测带宽与信号带宽一致时具有与二维检测器相同的检测性能,当检测带宽与信号带宽相差一倍时,信噪比损失2dB左右;用于混合速率突发信号检测时,最佳带宽与速率的概率分布、信噪比等多种因素有关;对发送功率不变的各速率均匀分布的混合速率突发信号,检测带宽匹配于最大信号带宽可在较高信噪比时获得最高的平均检测概率。这些分析为降维检测器的带宽参数选择提供了依据。  相似文献   

5.
A scenario is developed under which a discovery of extraterrestrial technology is made by one of the World’s search for exterrestial intelligence (SETI) programs. The nature of the signal received gives an absolute minimum of information as to the nature of the senders. Current SETI detection and reply policy is examined under these assumptions. Current policy calls for prompt and public release of signal information and stellar coordinates upon announcement of a discovery. The SETI protocol calls for no reply until authorized by international consultations. It is argued that changes are needed in these policies to guard against the possibility of unauthorized replies that could severely complicate long-term interstellar communication.  相似文献   

6.
为得到弹目交会过程中超宽带无线电引信接收机的时域输出信号,实现高速交会条件下引信接收机的性能优化,推导了取样积分微分电路的时域数学模型,提出了一种基于无载波信号时域多普勒效应的接收机输出信号时域仿真方法.弹目接近速度对接收机输出信号的影响研究表明,输出信号频率与弹目接近速度成正比;信号幅度与弹目接近速度关系曲线存在速度驻点.选择合理的积分、微分电容可设置恰当的速度驻点,提高引信的抗干扰性能.  相似文献   

7.
Blair DG  Zadnik MG 《Astrobiology》2002,2(3):305-312
Over the past few years a series of searches for interstellar radio beacons have taken place using the Parkes radio telescope. Here we report hitherto unpublished results from a search for optical beacons from 60 solar-type stars using the Perth-Lowell telescope. We discuss the significance of the null results from these searches, all of which were based on the interstellar contact channel hypothesis. While the null results of all searches to date can be explained simply by the nonexistence of electromagnetically communicating life elsewhere in the Milky Way, four other possible explanations that do not preclude its existence are proposed: (1) Extraterrestrial civilizations desiring to make contact through the use of electromagnetic beacons have a very low density in the Milky Way. (2) The interstellar contact channel hypothesis is incorrect, and beacons exist at frequencies that have not yet been searched. (3) The search has been incomplete in terms of sensitivity and/or target directions: Beacons exist, but more sensitive equipment and/or more searching is needed to achieve success. (4) The search has occurred before beacon signals can be expected to have arrived at the Earth, and beacon signals may be expected in the future. Based on consideration of the technology required for extraterrestrial civilizations to identify target planets, we argue that the fourth possibility is likely to be valid and that powerful, easily detectable beacons could be received in coming centuries.  相似文献   

8.
Tarter J 《Acta Astronautica》1997,41(4-10):613-622
Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.  相似文献   

9.
为了提高电子对抗无源侦察系统的测向、定位以及成像性能,针对宽带LFM信号提出一种基于延迟相乘去斜的波束形成方法。该方法巧妙地利用LFM信号频率调制样式的特点,通过时域延迟相乘预处理,将LFM信号的阵列输出数据转化为具有窄带阵列结构的相位延迟形式,最后利用窄带波束形成方法形成波束。新方法只适用于LFM信号,针对性很强,极大地减小了系统设计的复杂度。由计算机仿真实验分析可知,该方法较传统的方法有较好的稳健性,突破传统阵列间距的限制,提高了系统性能,在高分辨测向与成像领域中具有很好的应用前景。  相似文献   

10.
《Acta Astronautica》2014,93(2):534-537
The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.  相似文献   

11.
曾德国  祝俊  唐斌 《宇航学报》2012,33(6):781-787
同步Nyquist折叠接收机(SNYFR)利用双片模数转换器同时完成多Nyquist区域内的宽频段信号采集,为一种新型侦察接收机结构,在SNYFR结构上提出了线性调频(LFM)信号的参数估计算法。首先从频谱关于采样率对称的本振信号出发,指出其Nyquist区域在某些条件下不存在;其次提出了Nyquist区域存在的左边带本振SNYFR;以正弦调频本振信号调制频率为频率抽取因子进行序列构造,并以此序列估计Nyquist区域;最后在区域估计的基础上,得到欠采样的LFM信号,并完成参数估计。仿真表明,LFM参数估计精度在信噪比优于10dB时均已接近克拉美-罗下限。  相似文献   

12.
SETI observational programs conducted over the last two decades, and most of those planned for the near future, have concentrated on searching for signals at microwave frequencies. Considerations of signal-to-noise ratio at the receiving end indicate that this is the correct approach if the broadcasting society is not concerned with directionality and transmits into a fairly large solid angle. However, if that society desires to transmit only a highly directional beacon, then it is not now possible, given our lack of knowledge of advanced space technology, to predict reliably whether microwave or infrared wavelengths are to be preferred in an optimum search program. Given the realities of current terrestrial technology, either the centimeter or millimeter domain is to be preferred to the infrared, independent of considerations of directionality. In any event, there does not appear to be any cosmically unique (“magic”) frequency at which to conduct SETI.  相似文献   

13.
The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.  相似文献   

14.
Corbet RH 《Astrobiology》2003,3(2):305-315
If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.  相似文献   

15.
Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.  相似文献   

16.
随着高通量通信卫星系统对星间数据传输速率需求的不断提高,星间链路的工作频段将由Ka频段逐渐向频率资源更加丰富的毫米波频段发展。为了满足星间链路对毫米波频段自动角跟踪系统的发展应用需求,给出了一种基于单通道单脉冲角跟踪技术的V频段宽带角跟踪接收机的设计方案。采用LTCC和MCM技术实现了V频段接收组件的集成一体化设计;采用基于IQ正交混频的跟踪调制器结合数字相位补偿的单通道单脉冲角误差信号处理技术完成了宽带输入信号的角误差信号解调。在产品研制基础上,搭建了V频段角跟踪接收机测试系统,测试结果表明该V频段宽带角跟踪接收机可以完成对-95dBm~-55dBm输入信号电平范围内多种宽带数据传输信号的角误差信号解调,角误差信号抖动优于±250mV;表征输入信号电平强弱的AGC遥测电压随输入信号电平的增大而单调递增,各项指标满足V频段星间链路建链需求,为我国后续将要发展的毫米波星间链路系统奠定了扎实的技术基础。  相似文献   

17.
Search for ExtraTerrestrial Intelligence (SETI) is now more than half a century old and has provoked enough discussion on technical, philosophical, and popular level, much of it critical. Historically, the criticism of SETI has been strong enough to heavily influence the course of research, so that there is a significant interest in discerning the nuances and fine points of critical argumentation. In this paper, I outline the two major forms of SETI scepticism, “fundamentalist” and “instrumentalist,” which are often conflated in the published literature, both technical and popular. Precise delineation between these two types of scepticism is important for future research as a part of a wider taxonomic project, the build-up of SETI theory, as well as for smooth joining of SETI with the ongoing astrobiological revolution. Resolving the confusion in this respect is likely to lead to an improved atmosphere and heightened public image of future SETI searches and related activities.  相似文献   

18.
为了确保高灵敏度,数字信道化接收机的子信道带宽一般较窄。然而,在现代电子战环境中,存在大量的宽带雷达信号,其带宽经常会大于信道宽度,使得多信道都存在信号,将增加信道编码及脉内处理的复杂度。提出了一种邻信道合并方法,直接对信道化的原型低通滤波器进行了解析设计,便于采用带宽相加实现输出子信道的带宽扩展。首先给出了原型低通滤波器的一种解析解;然后,采用相似系数,从仿真角度证明了邻信道合并对宽带信号的适用性;最后,根据信道分布特点,设计了一种窄带测频方法。理论分析和仿真结果证实了方法的有效性。  相似文献   

19.
针对无源系统对噪声调频干扰源进行测向的问题,在研究宽带信号的数字鉴相算法的基础上,提出了一种采用多通道信号、基于广义相位谱(GPS)的测向算法。先把阵元接收到的信号变换到频域,然后运用广义相位谱对互谱相位差加权处理,进而估计出宽带噪声调频信号的波达角。仿真实验的结果表明,该测向方法对不同带宽的干扰信号都可保证较高的测向精度。  相似文献   

20.
Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity’s self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society’s values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号