首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paolo Musso 《Acta Astronautica》2011,68(3-4):489-499
The present paper is a synthesis of three presentation given by myself at the Toulouse IAC 2001 (Analogy as a tool to communicate abstract concepts in SETI), the Bremen IAC 2003 (From maths to culture: towards an effective message), and the Vancouver IAC 2004 (Philosophical and religious implications of extraterrestrial intelligent life). Its aim is to find a way to make our cultural concepts understandable to hypothetical extraterrestrials (ETs) in a SETI communication. First of all, I expose the reasons why I think that analogy could be a good tool for this purpose. Then, I try to show that this is possible only in the context of an integrated language, using both abstract symbols and pictures, also sketching two practical examples about some basic concepts of our moral and religious tradition. Further studies are required to determine whether this method could be extended to the higher-level abstract concepts in the other fields of our culture. Finally, I discuss the possible role of mathematics, logic and natural science in the construction of an analogy-based language for interstellar messages with a cultural content and a possible way of managing this matter from a social point of view.  相似文献   

2.
《Acta Astronautica》2011,68(11-12):1399-1405
The debate about the wisdom of sending interstellar transmissions is well-known to those involved in SETI, and frustrating for many. Its tendency towards intractability is a result of multiple factors, including: different models of the scientist's role as citizen and/or leader; disparate ideas about society's readiness to cope with frontier science; variable political substrates, particularly ideas concerning individual freedom and state control; competing ideologies of globalization; and the perceived relative risks and benefits of contact. (Variations in the latter, i.e. assessments of the risks and benefits of contact, derive partly from different thinking styles, including tolerance for risk, and partly from inferences based upon episodes of biological and cultural contact on Earth.) Unpacking the debate into its components may be of use to those debating policy about SETI transmissions, or at the very least, help keep in focus what, precisely, the perennial arguments are really about.  相似文献   

3.
Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity’s self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society’s values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.  相似文献   

4.
At present we have only one agreed public policy for handling the detection of an extraterrestrial intelligence (ETI), the ‘First SETI Protocol’ of 1989, which guides action in the immediate aftermath of detection, even though SETI (the Search for Extraterrestrial Intelligence) constitutes an active search for such a detection. The purpose of this paper is to set out areas in which policies might fruitfully be developed, including reviewing the rationale and investment in SETI, handling ETI artefacts, and approaches to direct contact. ‘Negative’ possibilities will be examined, for example, whether an ETI artefact or data should be purposefully destroyed.  相似文献   

5.
《Acta Astronautica》2014,93(2):512-516
One of the most important reasons why unsuccessful results have been obtained so far by the SETI Project is due to the fact that no sure targets to aim at have been available up-to the present state of research. All-sky surveys, even if very accurate and complete, might result to be time-consuming. SETI needs at least one effective “viewfinder” in order that a true targeted research is carried out with a possible success. The best foundation to get this can be identified with the search for the evidence of extraterrestrial astro-engineering activity in form of the Dyson spheres predicted by theory. The existence of such stellar objects can be ascertained by finding the evidence of two main signatures in stars of solar spectral type: infrared excess and anomalous light curves due to transiting artificial objects. These are probably the most powerful viewfinders in order to allow SETI techniques for intelligent signal search to be aimed at more appropriate targets. This paper is not intended to be a research paper but rather a review paper whose goal is not to present calculations and/or operational research but rather to be a research proposal for a more focused research in SETI just using Dyson Spheres as crucial markers.  相似文献   

6.
The SETI Permanent Study Group (abbreviated SETI PSG) of the International Academy of Astronautics (IAA), with web site: http://www.setileague.org/iaaseti/index.html, is one of the few international venues where, as of 2006, scientists with different backgrounds and from all over the world can meet and discuss recent advances in the scientific, technical and societal aspects of SETI. In particular, the Pe?ek Lecture that traditionally opens in October every year the SETI 1 Session of the International Astronautical Congress (IAC), is intended to describe the updated state-of-the-art in SETI and related fields with the accent on science and technology rather than on the societal consequences of a contact with ET. We have thus come to the conclusion that a Pe?ek Lecture devoted to the interplay between SETI and the rapidly evolving field of the Search for Extrasolar Planets (or Exoplanets) would be quite up-to-date, especially in view of the over 200 exoplanets rapidly discovered in the 11 years between 1995 and 2006. Moreover, besides SETI and Exoplanets, there is a third field of scientific investigation that, although not as mature as the former two fields in terms of experimental research, is striving ahead among many theoretical difficulties but might really change the course of human history when becoming reality: this is the theory (so far) of Interstellar Flight, that would one day enable us to travel across the vast interstellar distances initially by virtues of probes only, and later “in person”.The present Pe?ek Lecture is trying to compare the different grow rate and the (now small) overlap in between these three apparently “unrelated” fields. And even if we can hardly find any answer in these “dark ages” we live, let us at least raise the question: “When are SETI, Exoplanet Searches and Interstellar Flight going to merge in the future of Humankind?”.  相似文献   

7.
The aim of this review, whose title might as well be “Toward a dedicated lunar farside radio observatory”, is to provide information for potential interested workers whom we invite to contribute to this multidisciplinary effort.First point: in view of the dramatic increase of radio interference due to the development of satellite-based human telecommunications, it will soon become impossible to conduct valuable high-sensitivity SETI observations from the terrestrial ground. It is why a few years ago I started an interdisciplinary and international endeavor to protect for the next 20/30 years a well specified lunar farside crater (Saha) which no Earth- or geostationary orbit-based radio emission could reach.After raising technical, programmatic, legal, astronautical, industrial, political, ethical issues at a number of conferences of international learned institutions, this enterprise is now of interest for the wider field of next generation high-sensitivity radioastronomy at large, from decametric to sub-millimetric waves.This last year, positive results were the creation of an IAA Sub-committee for “A Lunar SETI Study”, the presentation of a Resolution to the IAU for the protection of a potential lunar radio observatory site, discussions at the IAA/IISL Scientific-Legal Roundtable on SETI & Society at IAF Congress in Torino, the organization of a half-day Scientific Event at next COSPAR Assembly in Nagoya and the initiation of an IAA Cosmic Study on the subject.We shall conclude by outlining the next efforts to be initiated up to a real Moon radio observatory.  相似文献   

8.
Tarter J 《Acta Astronautica》1997,41(4-10):613-622
Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.  相似文献   

9.
The special theory of relativity rests on the assumption that in no case can the speed of light be exceeded. Rather surprisingly, however, recent advances in the general theory of relativity show that Faster-Than-Light (FTL) travel is allowed by Einstein’s gravitational theory. An explanation of this apparent contrast between special and general relativity lies in the fact that general relativity uses non-linear differential equations and non-Euclidean spacetime geometry that special relativity does not. Therefore, this larger mathematical armoury makes room for a whole new class of very subtle and unexpected relativistic phenomena to come to light. One of these is the Theory of Wormholes, more politely termed Tunnels into Space–Time. In 1988, Kip S. Thorne and Michael S. Morris published a path-breaking paper about Wormholes showing how spaceflight between two stars might be possible in a time of hours if a “tunnel” dug into space–time exists between them. However, they also showed that keeping the tunnel open for the spaceship to travel through would require a kind of matter, called “exotic” by them, that does not appear to exist in nature, because its tensional strength would have to exceed the energy density of its matter. This request is a severe constraint to the natural existence of Morris–Thorne Wormholes, or even to their artificial construction by an advanced civilization. In 1995, however, the present author sought to replace the exotic matter in a Morris–Thorne Wormhole by a very intense magnetic field. Such “Magnetic Wormholes” could indeed exist because very intense magnetic fields are already known to exist on the surface of neutron stars and pulsars. This paper discusses the consequences on SETI of the possible existence of Magnetic Wormholes. Phenomena of divergent gravitational lensing might possibly occur in the proximity of pulsars and neutron stars. These effects could help us detect signals from very far civilisations by virtue of ordinary SETI techniques already in use.  相似文献   

10.
《Acta Astronautica》2014,93(2):547-552
The possibility of interstellar migration has been theorized during the past thirty years in the form of “Dysonships” that, using non-relativistic propulsion systems, are able to colonize the Galaxy in a relatively short time compared to the age of the Galaxy and consequently penetrate inside our solar system too. Observational evidence of this can be potentially obtained using the present state of the art of telescopes and related sensors, by following aimed searches and an expanded SETI protocol. Some transient and unrepeated radio signals recorded during standard SETI observations might be due to the transit of high-proper motion artificial sources of extraterrestrial origin, which are expected to show a very weak optical emission, a strong infrared excess and occasional high-energy bursts in the X and Gamma-ray wavelength ranges. Such artificial sources might show an interest to Earth by sending probes to visit it: such a possibility can be investigated scientifically as well.  相似文献   

11.
F Drake 《Acta Astronautica》1999,44(2-4):113-115
Radio Telescopes for SETI searches are less demanding than general purpose astronomical radio telescopes. This provides an opportunity to exploit economical approaches in designing SETI systems. Radio Telescopes in low Earth orbit offer no discernible advantages to SETI; indeed, they probably would perform more poorly than a telescope in any other location. Telescopes in geosynchronous orbits would be sufficiently far from Earth to mitigate greatly the deleterious effect of human radio transmissions. Telescopes on the far side of the moon would be superb both from a radio interference standpoint, and from a civil engineering standpoint. Single-reflector telescopes as large as 50 kilometers in diameter could be constructed with conventional materials. However, their costs appear prohibitive. The asteroid belt and the outer solar system are unpromising places to place a large radio telescope. Perhaps the ultimate radio telescope would utilize the sun as a gravitational lens, focusing radiation on free-flying 10-meter class or possibly larger radio telescopes located at distances of the order of 1000 A.U. from the sun. Such a combination has an energy collecting area at 10 centimeters wavelength equivalent to that of a radio telescope about 11 kilometers in diameter, or of the order of 3000 Arecibo radio telescopes. Such a system could detect transmitters with EIRP of the order of a gigawatt at a distance of the order of the distance to the galactic center.  相似文献   

12.
The nature of a SETI search makes observations uniquely vulnerable to radio frequency interference because the frequency of a possible ETI signal is unknown. Sensitive radio telescopes, sophisticated software and enhanced signal detection equipment are employed to detect faint signals in the 1–3 GHz frequency range. Frequency management at SETI occurs within a policy environment of the ITU spectrum allocation process. Increased demand by commercial satellite services for access to spectrum adjacent to bandwidth allocated to radio astronomy creates severe international and domestic pressures on SETI observations. Strategies for addressing the RFI problem at the international level will be discussed that include a contingency ITU allocation plan for exclusive use of a particular frequency range by SETI in the event a signal is detected. The lunar farside is, by international agreement, a radio quiet zone for use by radio astronomers. Protected from most human-generated emissions, a SETI radio telescope array on the lunar farside would provide reliable data with minimum interference.  相似文献   

13.
Ten thousand years ago, no-one on Earth was living a “civilized” life. What has happened since is remarkable and impossible to fully comprehend; yet, everyone has ideas about civilization, and how the world came to be as it is. Such understandings of civilizations on Earth inevitably influence speculation about extraterrestrial civilizations, in two ways. First, sometimes a specific Earth civilization or historical experience is explicitly used as a basis for inferences about extraterrestrial civilizations. Second, more general assumptions about the development and functioning of Earth's societies shape conjectures about alien societies. This paper focuses on the latter, general assumptions, with the aim of considering how we can use multidisciplinary approaches, and our knowledge of Earth's civilizations, to our best advantage in SETI.  相似文献   

14.
Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that “nothing makes sense in biology except in the light of evolution”. Here it will be argued that nothing in astrobiology makes sense except in the light of “Cosmic Convergent Evolution” (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this “fine-tuning” in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the “Selfish Biocosm Hypothesis” and the “Evo Devo Universe” as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded.  相似文献   

15.
The Search for Extraterrestrial Intelligence (SETI) typically presupposes contact with extraterrestrial civilizations much longer lived than humanity. Many have argued that given humanity's “youth,” the burden of transmitting should be placed on the extraterrestrial civilizations, which presumably possess more advanced technologies. These assumptions have contributed to the current emphasis on Passive SETI. Complementing this existing stress on Passive SETI with an additional commitment to Active SETI, in which humankind transmits messages to other civilizations, would have several advantages, including (1) addressing the reality that regardless of whether older civilizations should be transmitting, they may not be transmitting; (2) placing the burden of decoding and interpreting messages on advanced extraterrestrials, which may facilitate mutual comprehension; and (3) signaling a move toward an intergenerational model of science with a long-term vision for benefiting other civilizations as well as future generations of humans. Technological requirements for Active SETI are considered, and a case is made for Active SETI as a means for experimentally testing variants of the Zoo Hypothesis. Recommendations are provided for sustaining Passive and Active SETI and the communities that conduct these searches.  相似文献   

16.
Commentators on the social implications of detecting an extraterrestrial civilisation have stressed the need for community education and awareness during the SETI search, and for public sources of accurate, authoritative information if and when a signal is detected. Museums have a role in community education and are recognised by the community as authoritative sources of expert information. They are, therefore, well placed to be important conduits through which information on the progress of SETI programs and any signal detection can be channelled to the public. Via both exhibitions and in-house educational activities, museums are able to provide long-term community education and awareness programs and can respond quickly with detailed and accurate information in the event of a detection. This paper will consider the role of museums in educating the public about SETI. It will present suggestions for ways in which SETI researchers can develop mutually profitable relationships with museums, and also consider some of the reasons why museums might choose not to become involved with SETI, because of the wildly sensationalised and often mis-informed controversy which has surrounded it.  相似文献   

17.
《Acta Astronautica》2013,82(2):478-483
Speculations about the existence of life beyond Earth are probably as old as mankind itself, but still there is no evidence – neither for its presence nor for its absence. Moreover, we neither know the necessary nor the sufficient conditions for life to emerge, sustain or evolve. The Drake equation famously quantifies our ignorance by writing the number of detectable civilizations as product of factors that get increasingly uncertain the further one goes to the right. As a result, the predictive power is poor, and it ultimately depends on the most uncertain factor. However, if we were able to derive a reasonable estimate, we would not need SETI experiments to tell us whether we are alone or not. What has changed substantially over human history is our ability to explore the Universe. Most significantly, radio transmission technology gives us the opportunity to communicate over interstellar distances, and we are now able to not only determine the population statistics of planets within the Milky Way, but even in principle to find biosignatures in their atmospheres. By finding life beyond Earth, we will learn how frequently it emerges. By finding signals from intelligent extra-terrestrial civilizations, we will get unprecedented insight into our biological, technological, and societal evolution. The Drake equation is not such a useful means for assessing the chances of success of SETI, but instead it provides the framework for using observational data in advancing towards understanding the origins of our existence and our role in the cosmos, and maybe to get a glimpse of our future.  相似文献   

18.
《Acta Astronautica》2014,93(2):517-520
Insights from the robust field of risk communication and perception have to date been almost totally absent from the policy debate regarding the relative risks and merits of Active SETI or Messaging to Extraterrestrial Intelligence (METI). For many years, the practice (or proposed practice) of Active SETI has generated a vigorous and sometimes heated policy debate within the scientific community. There have also been some negative reactions in the media toward the activities of those engaged in Active SETI. Risk communication is a scientific approach to communication regarding situations involving potentially sensitive or controversial situations in which there may be high public concern and low public trust. The discipline has found wide acceptance and utility in fields such as public health, industrial regulation and environmental protection. Insights from the scientific field of risk communication (such as omission bias, loss aversion, the availability heuristic, probability neglect, and the general human preference for voluntary over involuntary risks) may help those who have participated in either side of the debate over Active SETI to better understand why the debate has taken on this posture. Principles of risk communication and risk perception may also help those engaged in Active SETI to communicate more effectively with other scientists, the public, with the media, and with policy makers regarding their activities and to better understand and respond to concerns expressed regarding the activity.  相似文献   

19.
This paper follows a train of thought initiated in a recent paper [7]. The work sets out a theoretical perspective on the possibility of cognitive universals underpinning the behaviour of animals with brains. Consideration of what we can know of intelligence in beings elsewhere in the universe obliges us to recognise universal and local factors relevant to SETI. Linguistic communication turns out to be genuinely constrained by circumstances even though the existence of linguistic activity will be universal in intelligent beings. The implications for activity in SETI are reviewed. An alternative approach to SETI—described in a recent paper ([9], but see also [8]) is contrasted with the messaging approach, and the conclusion is drawn that an ETI would opt for the alternative.  相似文献   

20.
The SETI community is becoming increasingly interested in extending its searches to include wideband signals, such as information-bearing beacons. However, prior to discovery of a target signal, a SETI receiver has no knowledge of the signal parameters (bandwidth, carrier frequency, modulation type, etc.) and so detection can be very challenging, especially at low signal-to-noise ratios. However, this paper shows by example that there exist signal classes and corresponding detection methods that permit straightforward discovery of wideband signals of unknown structure. The example given is a form of binary antipodal signalling that utilises spread-spectrum modulation, which offers benefits to the receiver in terms of immunity to noise/interference and ease of detection. The proposed detection method is a ‘symbol-wise’ autocorrelation process that takes advantage of the cyclostationarity property of modulated signals. Detection sensitivity is suboptimal in comparison with what is possible if the target signal structure is known. However, this deficit can be overcome by processing longer timespans of signal, providing scope for detection at extremely low signal-to-noise ratios. It is postulated that antipodal signalling represents an attractive option for interstellar beacons because it is both power efficient and there exists a simple complementary detection method not requiring explicit coordination between the transmitter and receiver. This in turn suggests there is a case for extending future SETI searches to include this class of signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号