首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
牛汗  刘波  史磊  那振喆  张鹏  茅晓晨 《推进技术》2017,38(11):2522-2531
为了控制压气机转子叶尖泄漏流动,减少叶尖泄漏流和叶尖泄漏涡对压气机内部流场带来的不利影响,针对小流量压气机进口跨声速转子进行了叶尖小翼的数值研究,探索了叶尖小翼对小流量跨声速压气机转子性能的影响和对叶尖泄漏流的控制机理。研究表明,4倍压力面宽度的压力面叶尖小翼可以使得压气机转子的流量裕度增加24.5%;吸力面叶尖小翼和压力面叶尖小翼影响失速的主要因素不同,吸力面叶尖小翼增大了吸力面侧流体的逆压梯度,扩大了低速流体区域,压力面叶尖小翼通过降低叶尖负荷,从而减弱泄漏强度,减小了低速流体区域。  相似文献   

2.
叶尖小翼对跨声速压气机转子变工况性能的影响   总被引:3,自引:1,他引:3  
为了进一步揭示叶尖小翼对跨声速压气机转子气动性能的影响机理,利用数值模拟方法研究了不同叶尖小翼安装方式对跨声速压气机转子气动性能的影响,并在分析跨声速压气机转子不同转速时的流动失稳机制的基础上探讨了叶尖小翼的扩稳机理.研究结果表明:最大宽度的压力面小翼在100%,80%及60%设计转速下分别使得跨声速压气机转子失速裕度增加8.1%,17.4%和7.1%.100%及80%设计转速时,转子叶尖区激波/叶尖泄漏涡干涉及泄漏涡破裂后产生的阻塞区是影响跨声速压气机转子内部流动失稳的关键因素.压力面小翼的扩稳机制在于降低了叶尖泄漏流强度,减弱了激波/叶尖泄漏涡干涉的强度,减小了叶尖泄漏涡破裂后产生的阻塞区.60%设计转速时,转子叶片吸力面气动过载导致的大面积的分离流动是诱发该跨声速压气机转子失稳的主要机制,此时压力面小翼的扩稳机制在于降低了转子叶尖来流的等效攻角,减弱了转子吸力面附面层三维分离的程度.   相似文献   

3.
为了进一步揭示吸力面叶尖小翼控制压气机叶栅间隙泄漏流动的作用机制,实验研究了三种不同宽度吸力面小翼在3%弦长间隙下对压气机叶栅气动性能的影响,并建立了带吸力面小翼的压气机叶栅旋涡结构模型。研究结果表明,吸力面小翼使得泄漏流在翼顶通道内发生掺混,延缓了泄漏涡的形成并降低了泄漏涡强度,三种宽度吸力面小翼分别使叶栅损失降低6.9%,7.7%和8.2%。吸力面小翼对叶栅损失值的降低量并不与其自身宽度增加量成线性关系。较大宽度的吸力面小翼会导致近端壁区气流欠偏转程度增加及泄漏流掺混损失等附加损失增大。  相似文献   

4.
为了揭示叶尖小翼对跨声速风扇转子气动性能的影响机理,采用数值模拟方法研究了跨声速风扇转子NASA Rotor 67附加不同叶尖小翼的气动特性,并在分析不同叶顶间隙时风扇转子失稳机制的基础上探究了叶尖小翼的扩稳机理。研究结果表明:最大宽度的压力面小翼在小间隙、设计间隙和大间隙情况下分别使风扇转子失速裕度提高32%,33.6%和70.6%。小间隙时,转子叶尖泄漏涡和叶片吸力面附面层分离是影响风扇转子失稳的关键因素,设计间隙和大间隙时,叶尖泄漏涡导致的大面积阻塞区是影响风扇转子失稳的关键。三种不同叶顶间隙情况下,压力面小翼的扩稳机制均在于有效降低了转子叶尖泄漏涡强度,减弱了叶尖泄漏涡导致的低轴向速度区流体的阻塞程度。  相似文献   

5.
融合式叶尖小翼对低速压气机转子气动性能的影响   总被引:2,自引:5,他引:2       下载免费PDF全文
钟兢军  韩少冰 《推进技术》2014,35(6):749-757
为了进一步揭示融合式叶尖小翼对压气机转子间隙流动的影响机理,采用数值模拟方法对低速压气机转子加装叶尖小翼控制间隙流动进行研究,着重考察了不同几何宽度及安装方式小翼对转子气动性能的影响。结果显示,叶尖小翼改变了转子中的泄漏涡轨迹,影响着叶片吸力面附面层的分离程度,适当几何宽度的压力面小翼可以在压气机转子效率略有降低的情况下使其失速点流量系数减小8.20%。  相似文献   

6.
具有叶尖小翼的涡轮叶栅间隙流动的实验研究   总被引:5,自引:5,他引:0       下载免费PDF全文
魏曼  钟兢军 《推进技术》2015,36(12):1825-1832
涡轮动叶叶顶间隙流动是引起动叶内部流动损失的重要因素之一,大约30%的流动损失是由间隙流动引起的。对高负荷涡轮叶栅在间隙高度1%叶高、0°冲角的条件下,加装不同宽度和安装位置的叶尖小翼进行了实验研究,结果表明,压力面小翼在一定程度上削弱了泄漏涡强度,0.3倍叶片当地厚度的压力面小翼效果最佳。吸力面小翼可使泄漏涡运动轨迹向相邻叶片的压力面侧偏移、泄漏涡强度减弱,间隙泄漏损失降低。随着吸力面叶尖小翼宽度的不断增加,叶尖小翼对泄漏流动的控制作用也不断增强,当宽度在1.2倍叶片当地厚度时,对泄漏流动控制效果最好,可使叶栅测量截面总损失与不加小翼的叶栅相比降低28%。组合小翼不如单纯的吸力面小翼效果好。  相似文献   

7.
为了揭示叶尖小翼对离心压气机气动性能的影响机理,采用数值模拟方法研究了NASA低速离心压气机(LSCC)附加不同叶尖小翼的气动特性,并在分析离心叶轮失稳机制的基础上探究了叶尖小翼的扩稳机理.研究结果表明:平顶型小翼对离心压气机性能影响较小,凹槽型小翼均使得压气机效率有所降低.凹槽型压力面小翼方案使得压气机综合稳定裕度增...  相似文献   

8.
韩少冰  钟兢军 《推进技术》2012,33(3):384-390
为了进一步揭示吸力面小翼对压气机叶栅间隙流动的影响机理,采用数值模拟方法对压气机叶栅加装吸力面小翼控制间隙流动进行研究,着重考察了吸力面小翼在不同来流冲角下(-5°、0°、+3°)对叶栅气动性能的影响。结果显示,负冲角时,吸力面小翼有效降低了叶尖泄漏损失及遏制了压力面分离。随着冲角增加,叶顶最大压差作用区向叶栅上游移动,泄漏涡与通道涡的相互作用增强,吸力面小翼对叶栅气动性能的改善逐渐降低。  相似文献   

9.
陈靖华  屠宝锋 《推进技术》2015,36(5):729-736
为研究周向进口总压畸变对跨声速压气机气动稳定性影响的物理机制,采用整环三维定常数值计算方法对进口总压畸变条件下的NASA 37号转子进行求解。计算结果表明:周向进口总压畸变导致压气机稳定裕度大幅降低,设计转速时稳定裕度仅为均匀进气时的59%;畸变区与转子旋转速度相同时,位于畸变区的转子叶片进气速度、压力较小,当压气机工作点接近稳定边界时,该区域的叶片会出现叶尖泄漏流前缘溢流和尾缘倒流的现象,同时叶尖区域出现严重的吸力面附面层分离,叶尖泄漏流和吸力面附面层分离共同导致压气机失稳;周向进口总压畸变不会改变失稳的始发位置,但会影响失稳的原因。  相似文献   

10.
可控转速机匣是一种新型的机匣处理方法,将机匣设计为可转动环段与固定环段两个部分,可转动环段会对转子叶顶区域的气流施加周向附加作用力并改变叶顶区域的周向压力梯度,进而对压气机级的稳定工作裕度产生影响。针对可转动环段在不同转动方向下的数值研究结果表明:当可控转速机匣与转子转动方向相反时,叶顶区域周向压力梯度的增大,加剧了转子的叶顶泄漏程度,泄漏涡及其破碎后气流的流动轨迹向相邻叶片压力面偏移,导致静子进口冲角逐渐减小至负冲角,压气机级失速提前。而当可控转速机匣与转子转动方向相同时,叶顶区域的周向压力梯度减少,降低了叶顶泄漏流动的原始驱动力,同时转子叶顶区域的泄漏涡及破碎后气流的流动轨迹远离相邻叶片压力面,通流能力增强。但静子进口冲角的增加使得静子吸力面分离加剧,限制了其扩稳能力的进一步提高,压气机级的稳定工作裕度最大可提升45.44%。  相似文献   

11.
钟兢军  桑则林  韩少冰  吴宛洋 《推进技术》2017,38(10):2290-2297
为了控制和降低压气机中由叶尖间隙引起的泄漏损失,对加装不同形状的吸力面小翼变间隙流场进行了实验研究。通过五孔探针测量叶栅出口流场,详细分析了不同间隙下吸力面叶尖小翼对压气机叶栅出口流场结构、气动损失和通流能力的影响。结果表明:与常规叶栅相比,附加吸力面小翼的叶栅泄漏涡涡核向远离叶片吸力面移动,且强度明显减弱,泄漏涡的起始点转移到吸力面小翼的最大厚度轴向位置处。不同形状的吸力面小翼在大间隙高度下对叶栅损失的影响较为明显,其中SW25方案叶栅在3%h间隙高度下效果最佳,可使叶栅出口总压损失降低15.38%。研究的三种不同形状的吸力面小翼仅在小间隙高度下改善了叶尖泄漏涡造成的叶栅出口气流角的过偏转/欠偏转现象。  相似文献   

12.
带吸力面小翼的压气机叶栅变间隙特性实验   总被引:1,自引:0,他引:1  
为了进一步揭示吸力面小翼在不同叶尖间隙条件下的影响机理,开展了有/无吸力面小翼的压气机叶栅变间隙特性实验.结果表明:与无间隙叶栅相比,叶尖相对间隙为1%时引入的泄漏流可以有效抑制叶片吸力面/端壁角区三维分离的产生,叶栅总损失和气动堵塞程度最低,此时为研究的4种间隙工况中的最佳间隙工况.吸力面小翼在此间隙下降低了泄漏涡强度的同时使通道涡增强,叶片吸力面重新出现了三维分离流动,叶栅总损失和堵塞程度均有所增加.在叶尖相对间隙为2%和3%时,带吸力面小翼叶栅中叶尖分离涡增强,主导叶尖区流动的泄漏涡强度减弱,两种间隙下叶栅总损失系数分别降低了8.9%和12.5%,堵塞系数分别降低了6.9%和6.3%.在研究的3种非零间隙条件下吸力面小翼降低了叶栅气动损失对叶尖间隙变化的敏感性,减弱了叶尖泄漏涡造成的叶栅出口气流角的欠偏转/过偏转程度.   相似文献   

13.
周向非均匀叶尖间隙对轴流压气机性能的影响   总被引:2,自引:0,他引:2  
以跨声速单级轴流压气机为研究对象,通过改变转子外机匣椭圆度产生周向稳态非均匀叶尖间隙布局结构,在高转速压气机试验器上详细开展了周向非均匀叶尖间隙对压气机性能特性与稳定边界影响的试验研究。同时,结合转子叶尖间隙流场动态压力精细化测量,揭示了周向非均匀叶尖间隙触发压气机内部流动失稳的物理机制。试验结果表明:转子叶尖周向非均匀间隙对压气机流量、压比和效率基本没有产生影响,但对气动稳定性具有显著影响。随着转子机匣椭圆度增大,稳定工作边界逐渐向右下方偏移,压气机稳定工作范围不断减小;不同转速下,压气机稳定裕度损失程度并不相同,高转速工作区域的压气机稳定裕度损失程度要大于中低转速工作区域的;周向非均匀叶尖间隙会导致原有转子叶片气动负荷沿径向重新分布,弱化转子叶片尖部气动加功能力;设计转速时,相比于小间隙情况,大间隙下的泄漏涡与通道激波相互作用,使得相邻叶片压力面侧的高静压低速区域扩大,加重对转子通道的堵塞作用。  相似文献   

14.
何成  王如根  胡加国  李坤  宋昊林 《推进技术》2016,37(9):1657-1663
为了研究不同换算转速下叶尖间隙流对转子失速的影响,对不同工况下叶尖间隙流动的特点进行了分析,讨论了压气机转子叶顶两个低速区的形成机理,以及该转子在多种换算转速下的失速机制。研究表明,转子失速是近压力面前缘和吸力面尾缘两个低速堵塞区共同作用的结果。二者的形成都与泄漏涡关系密切,前者是泄漏涡受激波干扰破裂而形成,后者是吸力面气流在泄漏流、吸力面二次流以及激波相互作用下而形成。不同换算转速下压气机失速机制不尽相同:在70%~100%换算转速,压气机叶顶失速主要是由于叶尖泄漏涡与激波相互作用而破裂;在115%换算转速,失速的主要触发因素为径向涡导致吸力面附面层低速气流向叶顶堆积。  相似文献   

15.
利用数值模拟的手段对桥式槽处理机匣的失速机制和扩稳机理进行研究。通过与实壁机匣和全通槽处理机匣的对比分析结果表明:叶尖泄漏和叶片吸力面的分离均会引起叶尖通道堵塞,进而诱发失速。在实壁机匣情况下叶尖泄漏流堵塞叶尖通道是诱发失速的主要原因;全通槽和桥式槽处理机匣均能减弱叶尖泄漏流强度,但是全通槽处理机匣加剧了吸力面的分离,这造成了较大的效率损失;而桥式槽处理机匣能够通过改变抽吸区和喷气区的面积大小控制泄漏流和分离流引发的流道堵塞,从而在裕度提升和效率损失之间取得平衡。研究表明:喷气区面积越大,叶尖攻角越大,吸力面分离越强,压气机效率越低;抽吸区面积越大,泄漏流越弱,压气机的失速裕度越大。  相似文献   

16.
翼梢小翼对涡轮间隙泄漏流动影响的数值研究   总被引:4,自引:5,他引:4       下载免费PDF全文
转子叶片叶尖增加翼梢小翼是控制涡轮间隙泄漏流减小泄漏损失的有效手段之一,为研究翼梢小翼位置对高压涡轮间隙泄漏流动的影响,利用数值模拟方法求解雷诺平均纳维-斯托克斯方程获得涡轮通道内的三维流场,并详细分析叶片压力边和吸力边增加翼梢小翼对间隙泄漏流及涡轮气动损失的影响。研究发现:压力边翼梢小翼可以降低间隙泄漏流量,但基本不改变间隙泄漏涡结构,对涡轮效率影响较小;吸力边翼梢小翼虽然对降低间隙泄漏流量作用不明显,但可以有效地抑制泄漏涡的生成和发展并削弱叶片吸力面壁面潜流,降低泄漏流动损失。结果表明:在控制间隙泄漏流动减小泄漏损失方面,吸力边翼梢小翼明显优于压力边翼梢小翼。  相似文献   

17.
钟兢军  韩少冰 《推进技术》2017,38(10):2200-2207
综述了叶尖小翼控制压气机叶顶间隙泄漏流动的研究进展。首先介绍了叶顶泄漏流动对压气机气动性能的影响,接着回顾了叶尖小翼技术在涡轮中的研究概况,之后详细介绍了大连海事大学船舶动力工程研究所在压气机叶尖小翼技术方面开展的一系列研究工作,分别讨论了叶尖小翼对压气机矩形叶栅、亚声速压气机转子和跨声速压机转子气动性能的影响及其作用机制。最后给出了压气机叶尖小翼技术未来的发展方向和研究前景。  相似文献   

18.
跨声速轴流压气机径向涡现象与失稳机理   总被引:2,自引:2,他引:2  
对NASA Rotor 37进行数值模拟并与实验结果对比,计算了堵塞点到失稳点的全部工况,详细探究了跨声速轴流压气机附面层分离规律与失稳机理.研究发现:激波后的吸力面附面层中存在一条径向涡,它增强了附面层分离,使部分靠近吸力面的主流向叶尖堆积.随着工况向失稳点推进,压气机转子叶尖出现两块堵塞区,由叶尖泄漏涡与激波作用引起的堵塞区位于压力面前端,由叶尖泄漏涡与径向附面层分离涡耦合作用引起的堵塞区位于吸力面50%弦长后,两块堵塞区的叠加作用最终引起压气机失稳.   相似文献   

19.
巫骁雄  刘波  史磊 《推进技术》2014,35(10):1356-1362
以双级对转压气机为研究对象,通过在两排转子机匣处开设抽吸孔,采用数值方法研究了不同抽吸流量下端壁附面层抽吸对压气机性能的影响,为吸附式压气机优化设计提供参考。计算结果表明:在级环境下端壁附面层抽吸可以提升压气机失速裕度,但抽吸流量过大会对效率造成一定损失,当抽吸1.6%流量时失速裕度提升了3.8%,压气机性能达到最佳;失速主要由间隙泄漏涡引起并首先在第二排转子叶尖发生,抽吸削弱了泄漏涡的强度推迟失速发生;端壁附面层抽吸增大了叶尖流通能力,使转子叶尖效率和压比得到提升,并有效改善了出口导叶流场。  相似文献   

20.
刘波  茅晓晨  张鹏  程昊  巫骁雄 《推进技术》2016,37(5):815-825
为了进一步了解对转压气机中不同转子叶尖间隙改变对其性能的影响,以对转压气机为对象,基于数值方法研究了该压气机不同转子对应的叶尖间隙效应及其性能的变化。结果表明:随着叶尖间隙的增加,压气机总压比和效率均有所下降;两排转子的峰值效率敏感度曲线与间隙大小均近似呈线性关系,且转子R2对应的峰值效率和喘振裕度随叶尖间隙的变化较R1更加敏感。该对转压气机存在最佳间隙组合,即转子R1和R2分别取叶尖间隙为1.0τ和0.5τ(τ代表设计间隙),此时的峰值效率和喘振裕度较设计间隙分别提高约0.62%和6.9%;转子叶尖间隙的增加会使得相应转子叶尖泄漏涡的起始位置后移,两排转子中一个转子叶尖间隙变化时会对另一个转子的叶尖流动产生影响,且转子R2叶尖间隙的增加对转子R1的影响更加显著;两排转子叶尖间隙的变化均会影响该对转压气机的最先失速级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号