首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳秒等离子体激励控制翼型流动分离机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究纳秒介质阻挡放电(NSDBD)等离子体控制翼型流动分离的物理机理,采用已建立的NSDBD唯象学模型耦合非定常Navier-Stokes方程模拟纳秒等离子体对流场的作用。使用非定常雷诺平均NavierStokes方程(URANS)和大涡模拟(LES)两种求解方法,研究纳秒等离子体激励对NACA0015翼型流动分离控制。结果表明:NSDBD等离子体激励促使边界层提前转捩,转捩对控制流动分离起重要作用;NSDBD激励开始时在翼型前缘形成展向涡,展向涡促使分离剪切层失稳并最终进入尾迹,展向涡贴近壁面运动,将外区的高能气流带入近壁区,使上翼面流场结构发生变化,然后翼型前缘流动提前转捩促使流动经过一个小层流分离泡后发生湍流再附,最终在上翼面形成稳定的附着流动。  相似文献   

2.
为了研究涡发生器(VGs)间距λ对控制边界层分离效果的影响,选取了4种涡发生器间距,λ/H(H为涡发生器高度)分别为5,7,9,11.采用大涡模拟(LES)方法对带逆压梯度的平板边界层分离流动及VGs控制分离流动进行了数值模拟.分析了有无VGs控制时,湍流场中大尺度相干结构及其演化规律,分别从旋涡间距、边界层内流体动能、压差损失等方面考察了VGs间距对控制流动分离效果的影响.研究结果表明当λ/H为5时,VGs间距过小抑制了旋涡的展向发展,λ/H为9,11时,VGs间距过大边界层内流体动能偏低,当间距λ/H为7时流动控制效果更优,此时计算域压差损失最小,相比较无VGs控制时,压差损失降低了30.95%.   相似文献   

3.
昆虫(果蝇)悬停飞行中,翅膀按照特定的拍动方式往复运动,产生非定常高升力维持身体的平衡.研究昆虫高升力机理,需要探索拍动翼运动引发的三维空间非定常流场的特性,尤其是三维空间非定常涡的发展变化过程.本文将氢气泡流动显示技术应用于动态模型实验,定性的观察拍动翼前缘涡(LEV)的发展破裂过程.并利用数字体视粒子图像测速,DSPIV(Digital Steroscopic Particle Image Velocimetry)技术,测得了拍动翼运动瞬时相位和相位平均的三维空间流场信息(速度向量场、截面涡量场、空间涡量场,以及三维空间流线),揭示了拍动翼展向流动的存在,并结合定性和定量方法多角度说明了前缘涡沿展向发展到破裂的流动结构,并说明了侧缘涡与前缘涡的相互影响.测量结果表明:在雷诺数960的情况下,拍动翼运动至相位时,翼面上前缘涡在距翼根约60%展长的位置发生破裂;翼根至破裂点之间,展向流动稳定,指向翼梢;破裂点以后,展向流改变方向,指向翼根.  相似文献   

4.
纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验   总被引:3,自引:1,他引:2  
为探索纳秒脉冲介质阻挡放电(NS DBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NS DBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30m/s和45m/s时,测力试验结果表明位于机翼前缘的NS DBD能很好地改善三角翼大迎角气动特性,其中来流速度为45m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NS DBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NS DBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。  相似文献   

5.
NACA0012翼型低雷诺数绕流的实验研究   总被引:3,自引:0,他引:3  
通过水槽氧气泡流动显示和PIV测速实验研究了NACA0012翼型在雷诺数为8200时的流动特性,重点炎注了翼型绕流结构随迎角的变化。研究发脱:分离点和分离翦切层形成旋涡的位置随迎角的增大而向上游移动,同时翼型上表面流动分离后形成的回流区尺寸随着翼利迎角的增加而增大。当流动再附于翼型上表面时,在再附点附近能够观测到展向涡的三维演化过程,并能观测到展向涡的局部配对现象。  相似文献   

6.
飞翼模型高速风洞PIV试验研究   总被引:1,自引:0,他引:1  
对小展弦比飞翼标模在2.4米跨声速风洞中创新开展了PIV试验。对空风洞进行了测速校核,并对小展弦比飞翼标模开展了二维、三维涡迹PIV测试,试验马赫数为0.4~0.9。测试结果表明,2.4m风洞PIV试验数据具有较高的准确度,M≤0.8时空风洞测速结果与理论值相差不超过1%,M=0.9时相差不超过2%。小展弦比飞翼标模测试结果显示,M数增大使机翼尾涡涡量和切向速度增大,涡核向内展向方向移动。前缘涡与上翼面分离具有密切关系:当M=0.8、α≤12°时,翼梢测试截面的前缘涡尚未破裂,上翼面未发生显著的流动分离;当α≥13°时,前缘涡破碎时机提前,当地后1/2弦长区域产生了比较明显的流动分离。  相似文献   

7.
早在60年代,人们就发现自然界中存在的旋涡具有顽强的三维性,甚至在实验室里仔细控制的二维条件下产生的圆柱绕流,也会在涡核中自动形成轴向速度,避免了圆柱两侧的涡不对称脱落.受这种现象的启示,引出了展向射流控制涡的概念.所谓展向吹气,最初是指在机翼上表面翼根处沿着大致平行于前缘的方向吹出一股射流来控制机翼上的前缘涡.许多研究表明,展向射流可以促使前缘涡的形成,增强涡的强度,延缓破裂,  相似文献   

8.
高负荷压气机叶栅分离结构及其等离子体流动控制   总被引:8,自引:0,他引:8  
赵小虎  吴云  李应红  赵勤 《航空学报》2012,33(2):208-219
 为揭示高负荷压气机叶栅内部流动损失的产生机理和分布规律以及等离子体气动激励的作用机制,利用拓扑分析和数值计算方法,从计算模型的建立与验证、基准流场的分离结构和等离子体流动控制3个方面展开研究;对总压损失系数分布、拓扑结构和表面流谱与空间流线分布以及旋涡结构进行分析,并开展了激励方式的优化分析.结果表明:随着攻角的增大,固壁面拓扑结构增加了3对奇点,吸力面流向激励改变了固壁面拓扑结构.当攻角为2°时,在吸力面拓扑结构中产生了一对奇点,打断了角区分离线,并引入了一条回流再附线.叶栅流道内部有5个主要涡系,尾缘径向对涡促进流体的展向流动,并成为吸力面倒流的主要组成部分;角涡是一个独立的涡系,其强度和尺度不受等离子体气动激励的影响.吸力面流向激励可以改善叶中流场,但对角区流动作用很小;端壁横向激励可以降低角区流动损失,对叶中流场作用有限;吸力面流向与端壁横向组合激励在整个叶高范围内均可以显著抑制流动分离;端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离.吸力面流向激励的优化明显降低,而端壁横向激励和组合激励的优化保持并增强了等离子体流动的控制效果.  相似文献   

9.
轴流压气机转子近失速工况全通道 数值模拟   总被引:4,自引:2,他引:4  
对某亚声速轴流压气机转子进行了全通道三维非定常数值模拟,获得了该压气机近失速工况下的详细流动情况.转子前缘均匀布置的十支静压数值探针监测结果表明,转子圆周上出现两个静压扰动区域,其中一个逐渐发展为突尖波.流场分析表明,叶顶通道中存在频繁的分离涡运动,静压扰动区域中分离涡的强度较大.分离涡诱发间隙流形成“前缘溢流”和“尾缘反流”.静压扰动区域沿圆周方向传播是由分离涡在通道之间的传递引起的.传播过程中,分离涡强度的持续增大是突尖波形成的关键因素.通道中较强的“尾缘反流”沿通道上行并绕过叶片形成“前缘溢流”的现象可作为突尖波形成的标志.   相似文献   

10.
RANS/LES在超声速突起物绕流中的应用研究   总被引:1,自引:1,他引:0  
安装在超声速/高超声速飞行器表面的突起物如机翼、控制舵等通常会导致复杂的激波/边界层干扰,对突起物的局部气动特性甚至飞行器整体的气动特性产生较大的扰动.在采用计算流体力学(CFD)数值模拟此类问题时,传统的求解雷诺平均Navier-Stokes(RANS)方程方法由于不能准确预测湍流脉动流场并且精度有限,在应用上受到一定的限制.本文在研究B-L (Baldwin-Lomax)内层模型和Smagorinsky亚格子模型优缺点的基础上,提出了一种新型的RANS/LES(Large Eddy Simulation)混合模型,并进行了算例验证,证实了该方法的可行性.在此基础上,对火箭表面突起物的干扰流场进行了数值模拟研究,细致地刻画了突起物附近的激波/边界层干扰、剪切层失稳和底部分离涡形成的非定常过程,获得了突起物及火箭表面上的压力脉动历程并进行了频谱分析.研究发现,相对于突起物底部的非定常分离流动,突起物前缘的激波和边界层相互干扰的非定常过程是突起物周围压力脉动的主导因素,这种高频的压力脉动可能对火箭内设备的正常工作产生不利的影响.  相似文献   

11.
ALE方法求解圆柱的涡致振动   总被引:5,自引:3,他引:5  
数值求解基于拉格朗日-欧拉(ALE)描述的不可压缩流体的N-S方程,计算了较小雷诺数下圆柱的涡致振动现象.N-S方程的对流项和扩散项分别采用三阶迎风紧致格式和四阶中心紧致格式离散,计算网格采用H-O非交错网格系统,并结合分块耦合方法.柱体运动简化为弹簧-阻尼-质量系统,柱体运动方程采用经典龙格-库塔方法求解.通过模拟柱体和流体之间的非线性耦合作用,成功地捕捉到了"锁定"、"拍"和"相位开关"等现象,并与试验数据相吻合.另外,本文详细分析了Re=200时圆柱尾涡形态、升力、阻力以及圆柱位移等随圆柱自振频率变化的过程,捕捉到尾涡结构变化的频率转折点.  相似文献   

12.
合成射流微扰动对后台阶湍流分离流动控制的实验研究   总被引:1,自引:0,他引:1  
后台阶流动是流体力学中一个经典的研究课题,代表着工程中一类横截面突扩的钝体绕流问题。后台阶流动分离会导致一些不利的影响,如高速旋涡的形成、流动损失、压力脉动以及气动噪声等。基于阵列式合成射流激励器对二维矩形后台阶湍流分离再附流动控制进行了研究,综合应用表面测压、七孔探针、粒子图像测速仪(PIV)和热线等多种实验手段,获取了后台阶的表面压力分布和非定常流场结构。结果表明:利用在台阶前缘形成的合成射流微扰动可使无量纲再附点长度降低25%,合成射流控制使得沿台阶下游的湍动能和雷诺应力增强,提高了台阶下游流场的混合效率。热线结果表明,频率是后台阶分离流动控制的重要参数,当频率为260 Hz,扰动频率与剪切层涡脱落频率之比为1.32时,合成射流控制可使位于1/2倍频的剪切层能量增强,仅需消耗较小的能量即可实现流动控制的目的。  相似文献   

13.
在现有文献的基础上,采用k-ωSST湍流模型和SIMPLE数值模拟算法,进一步探讨增加宽度比的三角柱体对于角区马蹄涡的影响。结果显示当三角柱体宽度在一定范围内增加时,马蹄涡的控制效果得到进一步提高。定义的涡强系数(基于涡心位置及马蹄涡的涡量)能很好地表征马蹄涡的强度。当三角柱体宽度与机翼厚度相同时,即宽度比为b/T=1(b为三角形宽度,T为机翼最大厚度)时涡强系数降到原来的27%。文中的三角柱体的高度仅为机翼厚度的1/20,和当地边界层的厚度相当。此种三角柱既能控制马蹄涡,又不会引起流场的整体剧烈变化。  相似文献   

14.
自由剪切层中的三维不稳定性   总被引:1,自引:0,他引:1  
本文是在文[1]的基础上研究自由剪切层中由Kelvin-Helmholtz不稳定波发展而形成的展向大涡结构的三维不稳定性。以大涡结构为基本流动,将稳定性分析归结为二维特征值问题,用pseudo spectral(伪谱)方法数值求解。研究发现:在没有亚谐波存在的情况下,大涡结构的最不稳定的扰动波是流向波长和其相同。展向波数较高,有对流特性的三维扰动波。它在剪切层中的发展与展向涡量的分布有关,大涡结构的涡核不稳定性和辫子不稳定性是流向涡形成的主要力学机制。本文还给出了不同雷诺数下三维扰动波增长率与展向波数的关系,这些结论与实验及数值模拟结果基本一致。  相似文献   

15.
在边界层壁面上,设计局部抽吸结构,采用直接数值模拟的方法,获得稳定的三维基本流.在此基础上,研究稳定及最不稳定的二维扰动T-S波的时、空演化机制;进一步探讨了局部抽吸的形式、强度大小及分布结构对二维T-S波的非线性演化影响及其对增长率的贡献大小.结果表明,局部抽吸结构诱导产生的三维基本流是扰动波得以快速增长的一个关键性因素,这是由于平均流剖面的改变及展向速度的出现,增强了流体运动中的不稳定性、扩大了中性曲线的不稳定区域范围.在最不稳定的二维扰动T-S波的非线性演化过程中,由于非线性作用的不断增强,逐渐激发产生出三维扰动波及高次谐波,其三维扰动波的流向波数和频率与二维扰动波的流向波数和频率相同;同时展向速度的大小对二维扰动波的增长、流动的失稳、流向涡的形成等方面都起着激励的作用.随着时、空的不断发展和非线性作用的迅速加强,正、负相间的流向涡逐渐形成,强度逐渐增大,流向涡的影响区域也在不断扩大,涡的形状逐渐拉伸变长,并出现强的剪切层,流动开始失稳等其它机制;这些结论与文献[4、5]的结果相吻合.  相似文献   

16.
大负荷低压涡轮叶型分离转捩流动的大涡模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
应用动力模式大涡模拟数值方法,对来流无扰动、不可压、雷诺数为5×104(基于进口速度和轴向弦长),定常来流条件下大负荷低压涡轮叶型(Pak B)叶型吸力面非定常分离转捩流动进行了三维数值模拟。在与相关实验数据的对比基础之上,对非定常流动物理信息进行了详细的分析讨论,揭示了计算来流状态下的Pak B叶型吸力面非定常分离转捩流动机理。结果表明,由无粘Kelvin-Helmholtz机制产生的、空间线性增长的初始二维不稳定性在分离剪切内诱导展向旋涡形成并脱落,脱落过程中的展向涡在非线性增长的三维不稳定性作用下发生变形并最终破碎成湍流。计算得到的Kelvin-Helmholtz不稳定性特征频率处于相关实验测量范围内。  相似文献   

17.
为了研究大叶顶间隙下压气机的流动失稳演化过程和物理机理,以某单级轴流压气机试验台为研究对象,利用布置于机匣壁面的动态压力传感器测量叶顶流场的脉动特征,利用全通道数值模拟获得与流场失稳发展相关的非定常流动细节。结果表明:随着流量减小压气机内部流动经历了稳定状态、旋转不稳定性和旋转失速3个阶段,叶顶泄漏涡的两种临界行为与不稳定性模式的转变有关。当叶顶泄漏涡移动到相邻叶片尾缘时,在与相邻叶片的干涉作用下开始随时间振荡,导致了小尺度的扰动沿周向传播,即旋转不稳定性。在近失速工况下,叶顶泄漏涡与主流交界面超过叶片流道进口平面,导致前缘溢流,并伴随着前缘径向涡的周期性产生、周向迁移和衰减。此时,前缘径向涡沿周向几乎呈均匀分布,构成了有序传播的扰动。随着压气机被进一步节流,前缘径向涡的有序传播被破坏,形成了局部聚集的分布特征,从而产生了局部堵塞更强、熵更高的失速团。  相似文献   

18.
采用拟谱方法对时间模式的交叉剪切混合层进行了直接数值模拟。计算结果表明:与平面混合层一样,展向涡的拉伸作用是交叉剪切混合层中流向涡形成的主要机制。当展向剪切强度较大时(如两主流交叉角为40°),与初期展向KelvinHelmholtz相关的单向旋转流向涡在拉伸作用下很快增长起来,并“坍缩”成“肋状”涡。当交叉角为40°时,涡核区存在类似平面混合层中“方块状”涡的流向涡结构,展向涡辫区还存在一组符号相反的流向涡,不过与“肋状”涡对应的涡结构呈扁平状,始终没有“坍缩”。当交叉角为60°时,“肋状”涡非常强,以致完全抑制了平面混合层“对称模式”的发展。当交叉角小到20°时,流向涡结构更接近于对称分布,然而“肋状”涡却没有形成。另外,计算结果还证实:与二维混合层相比,大强度展向剪切的引入能够加强流场的混合,同时,适当增加展向扰动波初始强度和波数也是提高混合效率的有效手段。  相似文献   

19.
采用大涡模拟与声类比的方法研究了尾缘锯齿对涡轮叶栅噪声的影响.设计了两种不同的尾缘锯齿,对比了Re=3.3×105(基于叶片弦长与叶栅出口速度)下两种不同结构锯齿尾缘叶栅与直尾缘叶栅的声功率.结果表明:尾缘锯齿可以降低叶片吸力面边界层分离噪声约5dB,降低尾缘涡脱落噪声约10dB.进一步的研究表明,尾缘锯齿可以降低叶片尾缘附近表面的压力脉动幅值约50%,将展向相关尺度较大的涡破碎成展向相关尺度较小的涡,并消除尾缘脱落涡,这三者的综合作用使噪声得到降低.   相似文献   

20.
机翼边界层的横流稳定性分析和转捩预测   总被引:1,自引:0,他引:1  
通过求解经典O-S方程(LST)、扩展的O-S方程(EOS)和线性抛物化稳定性方程(LPSE),对展向无限长、后掠角25°、迎角0°、来流Mach数0.8、单位Reynolds数6.79×106/m的机翼边界层进行了稳定性分析,结合eN方法进行了转捩预测。研究发现无限长后掠机翼在(x,ω)平面上的中性曲线没有下支,在(x,β)平面上的中性曲线呈反拇指的形状,横流不稳定性在机翼前缘占主导作用。当外界扰动进入边界层后,幅值将被直接放大,对于频率相同的扰动,首先是展向波数β大的增长起来,演化到一定位置开始衰减,然后是展向波数β小的逐渐增长起来,并且增长的指数N逐步超过波数大的扰动。转捩在机翼前缘完成,引起转捩的扰动波的展向波长约为2mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号