首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文介绍应用热分析技术,测定 HMX、HTPB 固化胶料及 HMX/HTPB 推进剂的热分解动力学参数,并研究了某些催化剂对它们的热分解特性的影响。  相似文献   

2.
HTPB推进剂贮存期预估模型研究   总被引:4,自引:1,他引:4  
提出了一种利用延伸率保留值预估HTPB推进剂贮存期的数学模型(半经验公式)。它与常用模型(指数形式和对数形式)相比,具有一定的可扩展性。通过对2个HTPB推进剂配方老化试验数据的回归结果进行相关性检验,得出算例中该计算式相关系数R>0.975、标准差Rstd<0.008、置信概率P>99%,预估得到的HTPB推进剂贮存期与实际接近。考虑到大部分HTPB推进剂的老化机理相似,所以该模型具有一定普遍性,适用于HTPB推进剂贮存期的预估。  相似文献   

3.
未固化AP/Al/HTPB推进剂燃速预示法——DSC法   总被引:2,自引:1,他引:2  
研究了未固化推进剂的燃速预示方法,用DSC法(差示扫描量热法)研究了多种AP/Al/HTPB推进剂的常压热分解特性。根据BDP燃烧模型,考察了推进剂的燃速与热分解参数的关系,提出了未固化推进剂燃速的预示方法。实验结果表明,用DSC法可较准确地预示未固化推进剂的燃速,并成功预示了某配方的基础燃速。  相似文献   

4.
针对复合固体推进剂力学性能存在散布的问题,通过方差分析试验,研究了松弛模量和泊松比的散布与确定变量之间的相关性。建立了力学性能散布的方差分析模型,分析了散布的变化规律,并对导致变化的原因进行了讨论。结果表明,松弛模量的散布受温度和载荷作用时间影响显著;泊松比的散布在不同的应变阶段差异较大,结构损伤的不确定性是导致泊松比散布变大的主要原因;玻璃化转变及结构失效会引起力学性能的很大散布。  相似文献   

5.
为了研究端羟基聚丁二烯(HTPB)推进剂细观损伤及传力特性,基于粘超弹性材料本构和双线性内聚力模型,结合DIGIMAT建立了推进剂代表体积单元(RVE)模型,通过应力集中因子和载荷传递系数定量分析了颗粒和基体之间的载荷传递及应力集中程度。结果表明,颗粒位置随机并不会对力学性能造成明显的影响,但颗粒发生“脱湿”的位置改变可能会影响裂纹扩展的路径;颗粒的长径比越大,应力集中现象越明显,相较于椭圆形颗粒,圆形颗粒的界面更容易发生“脱湿”损伤;大颗粒含量越高,初始阶段颗粒的应力集中程度越大,基体的应力集中程度越小,载荷传递的效率越高,脱粘后变化趋势相反,同时大颗粒含量的增加会加快界面损伤的进程,加剧界面损伤的程度;颗粒体积分数越大,颗粒和基体的应力集中因子都将逐渐增加,初始阶段载荷传递效率越低,脱粘后载荷传递效率越高。  相似文献   

6.
RDX/AP/HTPB推进剂热分解特性研究   总被引:2,自引:0,他引:2  
利用高压差示扫描量热仪(PDSC)研究了RDX/AP/HTPB推进剂系列配方的热分解性能,发现配方组分的改变对RDX/AP/HTPB推进剂的热分解性能有影响,突出表现在RDX/AP/HTPB推进剂中RDX分解峰变宽,AP放热分解效应增强。推进剂中添加Al粉后,RDX的分解受到抑制,而AP的分解却得到增强。  相似文献   

7.
低燃速、高比冲端羟基聚丁二烯(HTPB)推进剂是先进固体火箭发动机发展的重要方向,针对HTPB推进剂用传统降速剂的降速效率不高,且容易造成推进剂能量损失等问题,设计合成了以NF2SO3-、CF3SO3-、BF4-、ClO4-为阴离子的含有长链烷基的新型季铵盐降速剂。对这些降速剂进行了SEM和DSC表征、燃速测试及量子化学计算,研究了它们抑制高氯酸铵(AP)分解和降低HTPB推进剂燃速的作用规律,探讨了高氯酸根季铵盐的降速机理。结果表明,这些季铵盐降速剂对AP的热分解均具有一定的抑制作用,与添加相同含量(1%)草酸铵的推进剂燃烧性能相比,它们的降速幅度提升均超过4.5%,降速效果最好的BPE-1524CD的降速幅度提升达到10.43%;在相同燃速条件下,添加BPE-1524CD降速剂的推进剂燃烧残渣比添加草酸铵的降低了50%,比冲提高了10~20 N·s/kg;三种高氯酸...  相似文献   

8.
为揭示机械载荷作用下HTPB推进剂的力学性能变化规律和破坏机理,利用单轴拉伸法研究了温度及应变率对HTPB推进剂力学性能的影响。运用单轴拉伸方法,研究了5组不同应变率(0. 000 333~0. 167 s-1)和不同环境温度(-50~35℃)下HTPB推进剂的恒速率单轴拉伸破坏试验。通过试验数据获取损伤模型参数,并最终建立了含应变率和温度因子的累积损伤模型。利用建立的累积损伤模型来预测HTPB推进剂在特定温度及应变率(0.000 333~0.167 s-1)条件下的失效情况,计算结果与试验结果吻合较好。此累积损伤模型可为固体推进剂装药结构完整性分析方法和HTPB推进剂损伤和破坏研究提供一定依据。  相似文献   

9.
超支化多异氰酸酯对HTPB胶片性能的影响   总被引:1,自引:0,他引:1  
将超支化多异氰酸酯(HPI)作为HTPB胶片的固化剂,分别用红外光谱跟踪法、粘度法和拉伸力学测定仪对HPI-HTPB体系的固化动力学、粘度特性以及力学性能进行了测定。结果表明,HPI的—NCO基能与HTPB的羟基反应,其反应活化能和粘度均低于TDI-HTPB,而反应速率和反应程度均高于TDI-HTPB;与TDI-HTPB胶片相比,HPI-HTPB胶片具有较高的强度和较长的延伸率,如当R=0.9,HPI-HTPB胶片的强度和延伸率最佳,分别为TDI-HTPB胶片的2.33倍和4.56倍。  相似文献   

10.
为研究HTPB推进剂的裂纹起裂特性,建立了一种由单试件计算推进剂J积分和JV积分的方法,开展了HTPB推进剂松弛试验和含I型裂纹平板试件J积分试验,标定了试件的裂纹构型因子,得到了推进剂的载荷-虚位移曲线以及裂纹起裂J积分和JV积分值。结果表明,文中建立的方法能够很好地计算推进剂的裂纹起裂J积分和JV积分值,推进剂的J积分和JV积分具有明显的率相关性,随着加载速率的增加,其值也变大,且加载速率对JV积分的影响比对J积分的影响要大得多。  相似文献   

11.
丁羟衬层固化度工艺研究   总被引:2,自引:2,他引:2  
依据环境湿含量变化,进行了衬层固化机理分析及固化参数和固化时间对衬层性能的影响实验,研究了衬层发软,不易脱模的问题。结果表明,衬层固化参数研和固化度直接影响燃烧室绝热层/衬层/推进剂界面的粘接;采用衬层胶片、钢/衬/药或钢/绝/衬/药试件监控衬层固化度,并调整衬层固化参数,可确保燃烧室内衬层与推进剂的同步固化。  相似文献   

12.
通过差示扫描量热(DSC)分析、流变性能测试等实验手段并结合理论分析,证实了储氢合金自身的特性、高氯酸铵的存在以及浇注速度不当是储氢合金推进刑在固化过程中出现大量气孔的根本原因.通过调整加料顺序并控制浇注速度,较好地解决了含储氢合金的丁羟推进剂固化气孔问题.  相似文献   

13.
含硝胺(RDX)丁羟推进剂燃烧性能研究   总被引:3,自引:1,他引:3  
介绍含硝胺(RDX)丁羟推进剂的能量水平。在压强6.8MPa下实验配方的理论比冲达2597.71N.S/kg。研究了配方固体含量,铝粉含量,铝粉含量,AP/RDX配比与燃速,压强指数的回归关系,研究出既降低燃速又降低压强指数的附加物“TPC-M”和TCA,可使n值降到0.2以下,附加物TBP在提高燃速的同时又能降低压强指数。  相似文献   

14.
HTPB贮存老化性能   总被引:5,自引:0,他引:5  
测试和分析了常温条件下长期贮存丁羟胶的相对分子质量(Mr^-)、羟值(OH)和粘度(ηa)数据,研究了贮存下羟胶对推进剂性能的影响。结果表明:贮存丁羟胶的Mr^-,OH和ηa变化不显著,用它制成推进剂的性能仍保持原来水平。  相似文献   

15.
丁羟推进剂粘接体系中的组分迁移   总被引:3,自引:1,他引:3  
用浸泡增重法研究了衬层、绝热层对DOS和T27的吸收能力,用气相色谱仪研究了HTPB推进剂/HTPB衬层/EPDM绝热层粘接体系中DOS、T27和GFP的迁移。结果表明,HTPB衬层和EPDM绝热层对DOS和T27的吸收能力很强;粘合剂的极性增大或交联密度升高,衬层对DOS、T27的吸收能力下降,但粘合剂的极性增大,对衬层与HTPB推进剂的界面粘接性能不利;在HTPB推进剂/HTPB衬层/EPDM绝热层粘接体系中,DOS、T27或GFP的迁移平衡浓度为粘合剂相的平衡浓度。  相似文献   

16.
在讨论端羟基聚丁二烯(HTPB)基本表征项目及其分析测试方法的基础上,给出了HTPB规格化研究的一般原则和通用性程序.  相似文献   

17.
HTPB复合固体推进剂本构方程   总被引:3,自引:0,他引:3  
本文将Schapery非线性粘弹本构模型和Perzyna非线性粘塑本构模型组合建  相似文献   

18.
HTPB推进剂中增塑剂扩散系数计算   总被引:3,自引:0,他引:3  
针对丁羟推进剂/衬层界面增塑剂的迁移问题,研究增塑剂的扩散特性。采用分子动力学方法模拟增塑剂在丁羟粘合剂体系中的运动,再通过爱因斯坦关系式求得扩散系数;采用对衬层加厚的粘接试件进行加速老化实验方法,再通过费克第二定律计算得到增塑剂的扩散系数;考察不同环境温度和不同增塑剂含量条件下癸二酸二辛酯的扩散系数的变化。分析认为,增塑剂在丁羟粘合体系高分子链段运动产生的间隙中,以"跳跃"方式发生空间位置迁移。结果表明,扩散系数模拟值和实验值基本一致,数量级为10-12m2/s;温度升高,增塑剂运动活性加强,有效活动空间增大,扩散系数增大;粘合体系与增塑剂的共容限量使得增塑剂含量大于3%时,模拟得到的扩散系数依次略有下降。分子动力学方法计算增塑剂扩散系数更具优势。  相似文献   

19.
HTPB/TDI衬层与NEPE推进剂的界面反应机理   总被引:1,自引:0,他引:1  
采用富立叶变换红外光谱(FTIR)和全反射红外光谱(FTIR/ATR),研究了半固化的HTPB/TDI衬层表面的活性基团以及不同的—NCO基团与不同羟基的反应速率。结果表明,半固化的HTPB/TDI衬层表面含有大量的—NCO基团;HTPB/TDI衬层和NEPE推进剂粘合剂相的—NCO基与—OH的交叉反应速度较NEPE推进剂的固化反应速度快得多。HTPB/TDI衬层与NEPE推进剂界面的化学反应机理是粘合剂相中—OH基和—NCO基的交叉反应,其中衬层中TDI分子的—NCO基与PEG分子的—OH基的反应速度稍快于NEPE推进剂中N100分子的—NCO基与HTPB分子的—OH基的反应;在界面区域,HTPB/TDI衬层与NEPE推进剂通过氨基甲酸酯键形成化学粘接。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号