首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国航空学报》2016,(5):1335-1344
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.  相似文献   

2.
Variability of GPS satellite differential group delay biases   总被引:10,自引:0,他引:10  
An important issue in determining the accuracy of global positioning system (GPS) satellite ionospheric measurements is the instrumental delay biases between the L-band frequencies in both the satellites and the receivers. These differential L1-L2 biases must be measured and removed from the GPS measurements before an accurate estimate of the total electron content can be obtained. The results from the measurements indicate that the day-to-day variations of the satellite differential biases are quite well over a five-week time span, with a variation of less than 0.3-ns differential delay (one sigma). A follow-up experiment conducted two years later showed that the satellite biases had not changed significantly over this longer time span. When the prelaunch calibration values are compared with the experimental bias estimates, two of the four satellite pairs show excellent agreement and two differ significantly, indicating that prelaunch calibrations should be used with caution.<>  相似文献   

3.
The results are reported of the ATS-6/GEOS-3 and the ATS-6 NIMBUS-6 satellite-to-satellite orbit determination experiments. NASA intends to use the tracking data relay satellite system for operational orbit determination of NASA satellites. Hence, in the near future, satellite-to-satellite tracking data will be routinely processed to obtain orbits. The satellite-to-satellite tracking system used in the ATS-6/NIMBUS-6 and ATS-6/GEOS-3 experiments performed with a resolution of 1 to 2 m in range and less than 1 mm/s in range rate for a 10-s averaging. A Bayesian least squares estimation technique utilizing independent ranging to the synchronous relay satellite was determined to be the most effective procedure for estimating orbits from satellite-to-satellite tracking data. The use of this technique yields estimates of user satellite orbits which are comparable in accuracy to what is usually obtained from ground based systems.  相似文献   

4.
The Lunar Reconnaissance Orbiter Laser Ranging Investigation   总被引:1,自引:0,他引:1  
The objective of the Lunar Reconnaissance Orbiter (LRO) Laser Ranging (LR) system is to collect precise measurements of range that allow the spacecraft to achieve its requirement for precision orbit determination. The LR will make one-way range measurements via laser pulse time-of-flight from Earth to LRO, and will determine the position of the spacecraft at a sub-meter level with respect to ground stations on Earth and the center of mass of the Moon. Ranging will occur whenever LRO is visible in the line of sight from participating Earth ground tracking stations. The LR consists of two primary components, a flight system and ground system. The flight system consists of a small receiver telescope mounted on the LRO high-gain antenna that captures the uplinked laser signal, and a fiber optic cable that routes the signal to the Lunar Orbiter Laser Altimeter (LOLA) instrument on LRO. The LOLA instrument receiver records the time of the laser signal based on an ultrastable crystal oscillator, and provides the information to the onboard LRO data system for storage and/or transmittal to the ground through the spacecraft radio frequency link. The LR ground system consists of a network of satellite laser ranging stations, a data reception and distribution facility, and the LOLA Science Operations Center. LR measurements will enable the determination of a three-dimensional geodetic grid for the Moon based on the precise seleno-location of ground spots from LOLA.  相似文献   

5.
Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation to continue in the presence of fault measurement.Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly.However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage.In this paper, the impact of leverage on the fault identification is analyzed.The leveraged RAIM fault identification(L-RAIM FI) method is proposed with consideration of the difference in leverage for each satellite in view.Furthermore,the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method.The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage.  相似文献   

6.
System aspects of mobile communication and position determination by satellite are described. Topics of discussion are the choice of frequency, type of modulation/multiple access and system design, and considering the effects of active and passive intermodulation and multipath interference. Communication performance and position determination analyses are conducted with respect to small-scale domestic mobile communication systems, where the satellite mobile transponder constitutes only a fraction of the otherwise fixed services C-band or Ku-band payload, and where the orbit position of the spare satellite(s) is dictated by considerations other than purely radio positioning. The system tradeoffs and arguments presented lead to a particular modulation/multiple access system, which provides high channel capacity, good ranging accuracy, and high resistance to multipath fading  相似文献   

7.
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. It would enter aerosynchronous orbit and from there, beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The latest version of the spacecraft, the technologies used, and trip times to Mars are presented. The POWOW spacecraft is a general purpose solar electric propulsion system that uses new technologies that are directly applicable to commercial and government spacecraft with power levels ranging from a LEO power level of 4 kW up to GEO spacecraft about 1 MW. The system is modular, expandable, and amenable to learning curve cost projection methods  相似文献   

8.
Quick position determination using 1 or 2 LEO satellites   总被引:1,自引:0,他引:1  
We describe an approach for a medium accuracy position determination of a user terminal (UT) on the Earth surface, using one or two low Earth orbit (LEO) satellites. The positioning approach is intended to meet the requirements of a worldwide personal communications system using LEO satellites. The basic two requirements are: (1) immediate positioning, and (2) horizontal position accuracy of the order of 10 km. Those requirements stem from the need of the system to know the user's approximate location before it connects his call. The approach makes use of the two-way communication with the UT, which can receive, transmit, and make its own measurements. Delay and Doppler measurements are used in order to enable instantaneous positioning with one satellite, and in order to achieve unambiguous positioning with two satellites. A simplified Globalstar satellite constellation and the expected Globalstar delay and frequency measurement accuracy are used to demonstrate the concept and to evaluate its performances  相似文献   

9.
北斗卫星导航系统(BDS)本质上是一个高精度时间空间信息服务系统,是我国 自主运行的重要空间基础设施.BDS-3已于2020年7月正式开通,向广大用户提供RNSS、SBAS、RDSS单向和RDSS双向等多种授时服务.针对BDS-3提供的各种授时服务进行了简要介绍,详细讨论了各种授时方法,并利用实测数据进行了试验验证和比较分析.结果表明,BDS-3授时服务精度全部优于公布的指标要求,其中精度最高的SBAS授时方法精度可达2ns左右,RDSS双向授时精度和RNSS授时精度相当,达到9ns左右,RDSS单向授时精度最差,在15~30ns左右.  相似文献   

10.
Spherical double probes for measurements of electric fields on the GEOS-1, GEOS-2, and ISEE-1 satellites are described. An essential feature of these satellites is their conductive surfaces which eliminate errors due to differential charging and enable meaningful diagnostic experiments to be carried out. The result of these experiments is a good understanding of interactions between the plasma, the satellite and the probes, including photo-electron emission on satellite and probes. Electric field measurements are compared with measurements of plasma drift perpendicular to the magnetic field in the solar wind and the magnetosphere and the error bar for the absolute values of the electric field is found to be in the range ±(0.5–1.0) mV m-1 whereas relative variations can be determined with much better accuracy. A useful by-product from a spherical double probe system is the determination of satellite floating potential which is related to the plasma electron flux. This measurement allows high time resolution studies of boundary crossings. Examples of electric field measurements, which reflect the recent scientific results, are given for different regions of the magnetosphere from the bow shock, the inner magnetosphere and the tail. Several examples of simultaneous GEOS-ISEE observations are described.  相似文献   

11.
黄普  郭璞  张国雪 《飞行力学》2020,(1):80-83,94
针对我国地面测站对高轨卫星监视能力缺乏的问题,提出一种低轨卫星对高轨卫星仅测角初轨计算方法。该算法引入天基跟踪坐标系,消除测距信息影响,建立仅测角观测方程;引入法向运动,增加摄动因素影响,建立扩展拉普拉斯动力学模型;推导分析观测模型和动力学模型的关系方程,将初轨计算问题转换为非线性方程求解问题,利用高斯全主元消去法完成方程求解。通过实战和仿真测角数据对方法进行检验,结果表明,该方法能利用仅测角数据对非合作目标进行初轨确定,精度在公里量级,可为我国地基监视系统提供补充参考。  相似文献   

12.
The geocentric motion of a satellite is mathematically simulated by a system of second order ordinary differential equations involving two perturbing functions. The first one represents the second term of the gravitational potential of the Earth and the second is due to the atmospheric drag. Assuming that the solutions of the differential equations and their first derivatives are known from measurements, a stepwise computation of the perturbations is made through a deterministic method. Two examples illustrate our method. In a real case our method should help to design an appropriate maneuver to correct the motion of a satellite.  相似文献   

13.
The Saturnian system contains 18 known satellites ranging from 10 km to 2575 km in radius. In bulk properties and surface appearance these objects show less regularity than the sparser Jupiter system. The Galilean-sized moon Titan sports a dense atmosphere of nitrogen and methane which renders surface observations difficult, but also makes this moon intriguing from the standpoints of climate change and exobiology. The Cassini-Huygens mission will make extensive observations of the satellites over a range of wavelengths, as well as using in-situ sampling of satellite environments (and in the case of Titan, sampling of atmosphere and surface). The goals of these extensive investigations are to understand the bulk properties of the satellites, their surface compositions and evolution through time, as well as interactions with the magnetosphere and rings of Saturn. This knowledge in turn should provide a deeper understanding of the origin of the Saturnian system as a whole and underlying causes for the distinctive differences from the Jovian satellite system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
针对快速交会对接方案提出的航天器两圈实现变轨的可行性,使用太阳活动平静期的用户航天器四程测距数据,并结合中继卫星观测模型设计磁暴期航天器仿真测距数据,使用动力学定轨方法进行计算分析,论证了中继卫星系统对用户航天器的快速测定轨能力,解算出的航天器轨道根数精度为快速交会对接机精度分析提供了参考.  相似文献   

15.
针对全球卫星导航星座网络建设初期或论证阶段所涉及的网络体系结构、协议体系及相关组网等技术问题,开展了基于导航星座星间链路构建空间信息网络的技术研究,分别提出了由子网、接入网、骨干网等节点及其相互之间星间、星地无线链路构成的分层网络系统结构,设计了兼容遥控、遥测、测量与网络交互支持等业务的基于IP over CCSDS(基于空间数据系统咨询委员会标准的空间链路承载互联网协议业务)的协议体系,给出了全系统基本通信业务运行模式等。与传统高轨卫星通信系统相比,该星座网络具有高覆盖、低时延、随遇接入等优点,可实现星座导航性能与中低轨及地面用户通信性能的全方位提升,相关结果对我国全球卫星导航星座网络技术研究具有一定的参考意义。  相似文献   

16.
A study based on two levels of technology maturity, which applies to the power beaming concept to four planned satellite constellations, is described. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations to orbits ranging from low-Earth orbit to geosynchronous orbit. Two constellations, a space surveillance and tracking system and space-based radar, can be supported with current technology. The other two constellations, a space-based laser array and a boost surveillance and tracking system, will require power and transmission system improvements before their break-even specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20% would meet or exceed break-even for these constellations  相似文献   

17.
受地面设备时延误差的影响,转发式测轨系统的卫星定轨精度受到严重制约。为实现卫星精密定轨,地面设备时延误差的精确补偿至关重要,因此需要对地面设备时延进行精确测量。采用一种外环设备时延测量方法,实现对转发式测轨系统地面设备时延的实时测量。经过试验验证和分析,结果表明地面设备时延测量稳定度优于0.3ns,修正地面设备时延误差后的卫星重叠弧段的轨道差RMS值优于2m。  相似文献   

18.
Approximate nonlinear filtering theory is applied to the estimation of vehicle position and velocity in three demensions using sequential range measurements to three known locations. The particular case studied is a satellite air traffic control system which utilizes range measurements to two geostationary satellites and an altitude measurement. Three approximate filters are examined as suboptimal realizations of the minimum-variance filter and simulation results are presented to show that simple first-order approximation is an adequate representation. The parametric relationship between state covariance, measurement noise, vehicle maneuver structure, data rate, and system geometry is presented.  相似文献   

19.
In February of 1990, land mobile satellite experiments were conducted in Kyoto City, Japan, using the Engineering Test Satellite V (ETS-V). The received signal strength was recorded, as was the speed of the mobile as it traversed various downtown streets. The setting was that of a built-up urban area with medium and high rise buildings, electric utility poles, and trees lining the streets. These caused obstruction to the satellite line of sight (LOS). The signal level fluctuation due to diffraction of radio waves by the urban structures is analyzed. The results obtained from the measurements and theoretical calculation agree. The spatial frequencies due to diffraction are found to vary between 1.8 Hz to 5.3 Hz. It is concluded that this variation of received signal level will not adversely affect the receiver performance. Based on recorded signal strength, the performance of a digital land mobile satellite system (LMSS), under the above mentioned environment, is analyzed and the results presented  相似文献   

20.
The world's first aeronautical satellite communication experiments, conducted at L-band frequencies using a commercial aircraft, are described. An airborne antenna with electronically steerable beam and communication equipment was installed in a B-747F freighter flying over transoceanic flight routes. The satellite used in these experiments is the Engineering Test Satellite-Five (ETS-V). During the test period, various experiments, such as antenna pattern measurements, transmission performances, and voice quality evaluation were conducted. As the airborne antenna is the key component for the aeronautical satellite communication system, emphasis has been placed on antenna characteristics. Its performance is found to be closely related to the fading characteristics in low-elevation areas and to transmission error performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号