首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000?μG. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1?mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from ~5?μG to 1?mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a substantial density gradient across the remnant.  相似文献   

2.
Young pulsars surrounded by supernova remnants can power synchrotron nebulae through the injection of relativistic particles. Inverse Compton scattering by the high-energy electrons and positrons can produce TeV gamma-ray emission strong enough to be detectable by ground-based telescopes. The Crab nebula is the archetypical example of a gamma-ray plerion and was the first detected TeV source. The observed spectrum is consistent with predictions of synchrotron-self Compton models. This paper will review such models for the Crab and other plerions. Inverse-Compton scattering on other soft photon sources, particularly the 2.7K microwave background, may also be detectable in older remnants.  相似文献   

3.
The most frequent manifestation of synchrotron nebulae is the radio emission emanating from radio galaxies and supernova remnants. In general the synchrotron spectra of these objects do not extend into optical and x-ray domains presumably because the high energy electrons needed to sustain such emission are too short-lived. In fact, we knew of only one class of objects in which synchrotron nebulae are observed at frequencies above the radio, namely Crab-like supernova remnants (SNR). In these instances, a central pulsar is presumed to continually accelerate electrons up to the requisite energies, thus balancing the high synchrotron loss rate. The first part of this talk will discuss the available x-ray observations of these sources as well as some of the difficulties in their interpretation. The last part of the talk will be concerned with a new class of synchrotron nebulae associated with binary star systems.  相似文献   

4.
Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 6...  相似文献   

5.
Two-dimensional maps of the Crab Nebula have been synthesized in 22–64 keV range through the modulation collimator experiment. The effective angular resolution is about 15. The result indicates that the Crab morphology is strictly controlled by the pulsar.  相似文献   

6.
The EXOSAT ME observations of 3C58 and G21.5-0.9 are presented. The data for these objects is considered in conjunction with the data available from EXOSAT for the Crab-like SNR's Crab and Vela X. The objects have single power law spectra with a range of spectral indices of 0.6 to 1.5, 3C58 and Vela X being similar to the Crab whilst G21.5-0.9 and the source associated with the Vela pulsar have significantly flatter spectra. The derived column density for G21.5-0.9 is consistent with a distance of 5 kpc. The X-ray luminosities and overall electromagnetic spectra of these objects are investigated as age indicators and compared to current model predictions.  相似文献   

7.
Smith  A.  Zimmermann  H. -U. 《Space Science Reviews》1985,40(3-4):487-493
Presented here are Exosat LE1-CMA images of fields in the Vela SNR. Soft X-ray emission is observed in the north of the remnant indicating a filamentry structure. No X-ray emission was seen in two fields to the west and south-west which have optical filaments but were not studied by Einstein. The Vela pulsar is observed and is significantly broader than a point source indicating the presence of a small nebula as seen by the Einstein HRI. The flux seen from the point source in the CMA is consistent with blackbody radiation from a 106 degree neutron star of approx. 10 km radius. A bright ridge of emission is seen north of the pulsar which may be part of the extended synchroton nebula seen in the 2–10 keV range.  相似文献   

8.
We review the long term variability properties of accretion powered X-ray pulsars in massive Pop. I binary systems and discuss how their characteristics, in particular the large dynamic range in luminosity of the transient pulsars, can be understood in terms of the interaction of the accreting material with the neutron star magnetosphere. We point out that the X-ray pulsar transient activity in general can be due to the transition between direct wind accretion and a regime in which the centrifugal drag exerted by the pulsar magnetosphere inhibits accretion onto the neutron star surface.  相似文献   

9.
TeV emission has been observed with high signal-to-noise from: two pulsar-driven supernova remnants, the Crab Nebula and PSR B1706-44 and a blazar class AGN, Markarian 421. Other sources, observed without the benefit of major background reduction techniques, are some of the compact object binaries. These discoveries plus the discoveries of EGRET of more than 130 sources at lower energies point to a growing number of scientific questions capable of being addressed by this field (particularly for distant sources via intergalactic absorption processes). Rapid further development will come as new instruments employing a variety of background reduction techniques come on-line.  相似文献   

10.
《中国航空学报》2023,36(1):386-395
X-ray pulsar-based navigation is a revolutionary technology which is capable of providing the required navigation information in the solar system. Performing as an important pulsar-based navigation technique, the Significance Enhancement of Pulse-profile with Orbit-dynamics (SEPO) can estimate orbital elements by using the distortion of pulse profile. Based on the SEPO technique, we propose a grouping bi-chi-squared technique and adopt the observations of Rossi X-ray Timing Explorer (RXTE) to carry out experimental verification. The pulsar timing is refined to determine spin parameters of the Crab pulsar (PSR B0531+21) during the observation periods, and a short-term dynamic model for RXTE satellite is established by considering the effects of diverse perturbations. Experimental results suggest that the position and velocity errors are 16.3 km (3σ) and 13.3 m/s (3σ) with two adjacent observations split by one day (exposure time of 1.5 ks), outperforming those of the POLAR experiment whose results are 19.2 km (3σ) and 432 m/s (3σ). The approach provided is particularly applicable to the estimation of orbital elements via using high-flux observations.  相似文献   

11.
Photoelectric WBVR observations of Be star HDE 245770=V 725 Tau, the optical counterpart of the transient X-ray pulsar A0535+26, having a pulse period of about 104 s, were conducted for more than 10 years. An irregular long-term optical variability of the star with amplitudes of the order of a few tenths of magnitude was found to be a usual phenomenon. In some cases rapid changes of the star's optical luminosity with a characteristic period of a few tens of minutes or a few hours, and an amplitude of several hundredths of magnitude in all the spectral bands used, which have practically coincided or correlated with the X-ray pulsar outbursts detected by X-ray satellites, were observed.Photoelectric recording of the optical flux from HDE 245770 were made in 1981–1982 with a time resolution of 1 second and 10 s, respectively, in theR spectral band (0 7000 Å) and in the narrowH -emission-line band (1/2 75 Å) using a 48-cm reflector of High-Mountain Tien-Shan observatory of the Sternberg Astronomical Institute near Alma-Ata. An analysis of autocorrelation functions of the flux changes from object under study and a comparison with the star BD+26° 876 indicated the variability of luminosity of V 725 Tau in theR spectral band on a time scale of a few tens of second; this variability resembles shot noise with a characteristic time of stochastic bursts of about 15–20 s and their amplitudes of about a few tenths of a percent. InH -emission-line radiation autocorrelation functions and power spectra show quasiperiodic variability of luminosity of HDE 245770 with a characteristic period of about 100–150 s and an amplitude in the neighbour-hood of 0.5%. The latter result is not quite reliable because of not quite fine weather conditions during the observations; independent observations and check-up are required.  相似文献   

12.
The correlation between diffuse galactic gamma rays and gas tracers is studied using the final COS-B database and H i and CO surveys covering the entire galactic plane. A good quantitative fit to the gamma rays is obtained, with a small galacto-centric gradient in the gamma-ray emissivity per hydrogen atom. The average ratio of H2 column density to integrated CO temperature is determined, the best estimate being (2.3 ± 0.3) × 102 molecules cm–2 (K km s–1)–1. Strictly taken, this value is an upper limit. The corresponding mass of molecular hydrogen in the inner galaxy, derived using both 1st and 4th quadrants, is 1.0 × 109 M .The softer gamma-ray spectrum towards the inner galaxy found in previous work can be attributed to a steeper emissivity gradient at low energies and/or to a softer gamma-ray spectrum of the emission distributed like molecular gas. A steeper emissivity gradient at low energies could be related to cosmic-ray spectral variations in the Galaxy, to different distributions of cosmic-ray electrons and nuclei, or to a contribution from discrete sources. A softer spectrum for the emission associated with molecular clouds may be physically related to the clouds themselves (i.e., cosmic-ray spectral variations) or to an associated discrete source distribution.New results on the temporal and spectral characteristics of the high-energy (50 MeV to 5 GeV) gammaray emission from the Vela pulsar are presented. The whole pulsed flux is found to exhibit long-term variability. Five discrete emission regions within the pulsar lightcurve have been identified, with the spectral characteristics and long-term behaviour being different. These characteristics differ significantly from those reported earlier for the Crab pulsar. However, geometrical pulsar models have been proposed (e.g., Morini, 1983; Smith, 1986) which could explain many of these features.  相似文献   

13.
Several theories seek to explain the peculiar shapes of planetary nebulae. Those of Louise, Kirkpatrick, and Phillips and Reay rely on progenitor rotation. The velocity-radius relation for the shells of well observed planetaries do not extrapolate back through the origin, but rather fall short, suggesting that the shell acquires its velocity over a significant period of time. Kirkpatrick's theory relies heavily on long term acceleration of the nebular shell, and other theoretical studies support the idea of acceleration of the nebular shell up to the time it becomes optically thin to the ionizing radiation from the central star.  相似文献   

14.
The X-ray properties of the supernova remnant G 29.7-0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index =-0.77, hydrogen column density on the line of sight NH=2.3.1022 cm–2. The incident X-ray flux from the source is (3.6±0.1) 1011 erg cm–2 s–1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2. 1036 erg s–1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus constraining the hydrogen column density to be NH=(3.3 ±0.3) 1022 cm–2 and the energy spectral index =1.0±0.15. This new observation is consistent with emission by a synchroton nebula presumably fed by an active pulsar. An upper limit of 1.5% for the pulsed fraction in the range of periods 32ms to 104 s has been obtained.  相似文献   

15.
The current status of the investigation of the soft X-ray diffuse background in the energy range 0.1–2.0 keV is reviewed. A consistent model, based on the soft X-ray brightness distribution and the energy spectrum over the sky, is derived. The observed diffuse background is predominantly of galactic origin and considered as thermal emission for the most part from a local hot region of temperature ≈106 K which includes the solar system. Several pronounced features of enhanced emission are interpreted in terms of hot regions with temperatures up to 3×106K, some of which are probably old supernova remnants. The properties of the soft X-ray emitting regions are discussed in relation to the observational results on O vi absorption.  相似文献   

16.
A progress report is given on our current interpretation of the X-ray emission from supernova remnants. Previous results from earlier experiments, the Einstein Observatory in particular, are reviewed and supplemented by the most recent data from the Exosat mission for a selection of remnants (Puppis-A, Cas-A, SN 1006, RCW103, W49B). Major improvements come from using the high energy spectra obtained with Exosat which indicate the presence of a very hot electron component in both young and old thermal remnants. Despite the fact that non-equilibrium ionization has been found in some cases, the spectra of most remnants investigated so far are not well represented by single non-equilibrium models, but require at least two components. An impression of the variety of plasma states which can be found in remnants is obtained from Exosat low energy filter spectroscopy of Puppis-A, which shows temperature variations on scales as small as 1.  相似文献   

17.
结合国家导航体系发展与工程应用迫切需求,主要讨论了X射线脉冲星计时导航的应用模式,并介绍了国内外空间试验进展。总结了脉冲星计时地基射电与空间X射线观测的特点和发展现状,阐释了脉冲星时研究与发展的重要意义;总结并归纳了X射线脉冲星导航的应用特点和现有水平,讨论了X射线脉冲星导航的技术优势和典型应用场景;总结了国内外X射线脉冲星计时导航的空间试验进展。根据国内外的空间试验结果,脉冲星时稳定度可达10-14量级,脉冲星导航精度可达到km量级,初步具备在轨应用价值。因此,加快推进国内脉冲星计时导航技术的在轨演示验证与工程应用具有重要意义。  相似文献   

18.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

19.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   

20.
Stellar coronae were among the first predicted X-ray sources. Because of their relatively low X-ray luminosities, however, they have been discovered only during the last few years.In the present paper the current state of stellar coronal X- and UV observations has been reviewed, including some preliminary observational results from the HEAO-1 and IUE satellites, but still without any result from the recently launched X-ray satellite HEAO-2.Late 1978 about two dozens of stellar soft X-ray sources have been detected, e.g., normal stars like the Sun (e.g., Cen), very active stars (RS CVn systems), and possibly a corona around an intermediately hot white dwarf (Sirius B).The observational results of various objects have been discussed and compared with X-ray luminosity predictions based on minimum-flux coronal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号