首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用 Donnell 型扁壳理论,利用 Galerkin 法和广义平均筋条刚度法分析了在均布外压作用下碳/环氧复合材料三角形网格加筋圆锥壳体的总体稳定性,得到了临界载荷的解析表达式。数值结果表明,本文理论预示值与临界载荷的实验结果吻合较好。  相似文献   

2.
本文由两部份组成,第一部份是从扁壳理论出发建立不对称夹层壳的基本微分方程,并给出不对称夹层圆柱壳的临界轴压和临界外压计算公式,以及不对称夹层球壳的临界外压计算公式。第二部份对夹层圆柱壳和截锥壳的临界外压计算进行了较详细的研究。给出了四个夹层圆柱壳的外压试验结果和两个夹层截锥壳的外压试验结果。对夹层圆柱壳的临界外压计算给出了设计曲线和近似计算公式,并与试验结果作了比较。根据夹层截锥壳的外压试验结果,对夹层截锥壳的临界外压计算提出了较为恰当的当量圆柱壳方法。  相似文献   

3.
板料不均匀拉伸起皱临界条件的分析   总被引:1,自引:0,他引:1  
用弹性稳定理论能量法求得了一对边固支另一对边简支矩形板在任意载荷作用下失稳的临界方程,得到了板料不均匀拉伸诱导压应力起皱的临界载荷系数,并以此为基础,证明了方板对角拉伸与矩形板不均匀拉伸失稳临界点的一致性,以及方板对角拉伸试验(YBT)作为不均匀拉伸起皱现象模拟试验的可行性。  相似文献   

4.
复合材料网格加劲壳是一种很有希望的结构概念。本文为复合材料网格加劲壳总体失稳的临界轴压和临界外压计算提供了一个计算方法和一个PC-1211袖珍机用的计算程序。可供有关设计计算参数。  相似文献   

5.
最简单的谱载荷是在基本循环载荷中施加单一或多个拉伸和拉—压过载的情况。有过载作用,裂纹扩展速率显著降低。实验证明,过载迟滞效应最大点、即裂纹扩展速率最低点不是在刚施加过载之后,而是距过载点有一段距离,即所谓延缓滞后或推迟延缓(delayed retardstion)效应。现有的计算模型大多未考虑这一效应,因而与实际情况有很大差别。有的模型,例如松冈模型虽然考虑了这一效应,但表达这一效应的参数必须由实验确定,这样就使该模型应用很不方便。本文根据产生推迟延缓的机理和对试件的断口分析,提出了一个确定这一参数的计算公式,进而提出了对拉伸过载和拉—压过载作用下的裂纹扩展计算模型。用本模型计算了几种材料在不同加载条件下的迟滞效应,计算结果与实验结果相当符合。 由于本模型可以计算拉仲过载和拉—压过载等情况下的迟滞效应,因而作一些合理的假设可用以计算复杂谱载荷作用下的裂纹扩展速率和寿命,本文计算了飞机起落架施旋转臂和机翼加劲板在谱载荷作用下的裂纹扩展寿命,计算结果与实验或统计结果基本符合。  相似文献   

6.
薄壁管轴压胀形关键工艺参数及成形极限   总被引:4,自引:0,他引:4  
利用粘性介质传压,对薄壁管轴压胀形进行了研究;基于塑性理论和分散性失稳理论,推导了轴对称胀形内压力分布规律,得出了内压加载区间和轴向加载关系;建立了基于载荷控制的加载函数,提出了送料控制方法,优化了加载模式;基于集中性失稳理论,计算了胀形压力极限,建立了均匀变形极限和极限应力比的概念,形成了零件可成形性的基本判据;分析了管材成形过程中应力变化特点,揭示了管材胀形区由拉-压应力状态迅速发展到双向受拉的机理.通过实验并利用有限元方法对薄壁管轴压胀形过程进行了模拟计算和研究,验证了理论分析结果.   相似文献   

7.
含椭圆分层缝纫复合材料层板的局部屈曲研究   总被引:1,自引:0,他引:1  
建立了分析含椭圆分层的缝纫增强复合材料层板压缩屈曲问题的三维模型.通过应用瑞利-里兹法研究了分层椭圆几何参数和缝线等效弹性系数对压缩屈曲载荷的影响.分析结果表明,缝纫对提高临界曲屈载荷的作用十分明显,随着缝线等效弹性系数的增大,临界曲屈载荷迅速提高;分层椭圆的长轴垂直于载荷方向时,临界曲屈载荷最小,并且随长轴的长度增大时,临界曲屈载荷减小并逐渐收敛.  相似文献   

8.
为了在初步设计阶段能够快速计算整体次加筋板的失稳载荷,在一些合理假设的基础上,提出了一种简单的近似计算方法.以无缺陷的四边简支的矩形次加筋板为研究对象,针对该结构的3种失稳形式,利用传统加筋板理论分别计算相应的屈曲载荷,并以3种失稳形式中最小的临界屈曲载荷作为整体次加筋板的近似屈曲载荷.应用ABAQUS软件的屈曲线性摄动步方法分别计算了两组有限元模型:一组用来验证3种失效形式理论公式计算的准确度;另一组是整体次加筋板有限元模型,用以验证所提出的次加筋板屈曲载荷计算方法的适用性.以上研究均考虑了纵向压缩载荷和压剪组合载荷两种工况.计算结果表明,理论近似计算方法能够准确地计算次加筋板的失稳载荷,有一定的工程应用价值.   相似文献   

9.
正交各向异性粘弹性薄板的蠕变屈曲研究   总被引:1,自引:2,他引:1  
研究有初始挠度的单向受压粘弹性板的蠕变屈曲问题,在建立控制方程时利用了经典薄板理论。通过求解控制方程得到挠度随时间变化的解析表达式,又通过分析得出了具有不同长宽比的粘弹性薄板的瞬时临界载荷及持久临界载荷。  相似文献   

10.
工程结构中复合材料柱壳已经得到了广泛使用,并且屈曲是其结构设计的一个主要问题。由于试验结果与线性屈曲理论分析结果的巨大偏差,线性特征值屈曲分析只能作为结构的一个初步评估方法,进一步分析可选用含初始几何缺陷的后屈曲分析。本文以轴压载荷下的1/3含口盖复合材料柱壳为研究对象,建立ABAQUS有限元模型,分别进行了基于Buckle算法的线性特征值屈曲分析、基于Riks法的含初始几何缺陷的非线性后屈曲分析,所得应变、载荷数值结果与试验结果吻合。非线性Riks后屈曲分析显示结构具有后屈曲承载能力和稳定的后屈曲平衡路径,能更准确地捕捉临界屈曲载荷,所得屈曲模态也更加贴近试验屈曲模态,因此,在设计上以含初始几何缺陷的Riks法得到的结果更加真实可靠。进行了含口盖复合材料柱壳的初始几何缺陷的敏感性分析,结果表明该结构对初始几何缺陷是非常敏感的,为了提高结构抗屈曲性能,应提高加工工艺质量,减少初始几何缺陷。  相似文献   

11.
正交各向异性复合材料圆锥壳非线性稳定性分析   总被引:1,自引:0,他引:1  
利用能量变分原理和非线性几何方程推导了圆锥形薄壳稳定性的基本微分方程,并建立了适合于一般各向异性复合材料圆锥壳的Donnell型控制方程,针对正交各向异性复合材料圆锥壳的特殊情况,选择适当的位移函数,通过坐标变换将难于求解的变系数偏微分方程转换为容易求解的常微分方程。根据所设位移函数,严格从协调方程中推导出应力函数的表达式,并用伽辽金方法分析了正交各向异性圆锥壳在外压作用下的稳定性问题,最后得到一  相似文献   

12.
开口圆柱薄壳结构的轴向承载能力和稳定性分析是空间薄壁管式伸展机构(STEM,Storable Tubular Extendable Member)设计的关键问题之一.基于特征值屈曲分析方法,研究了轴压铍青铜开口圆柱薄壳结构在两端固支条件下的屈曲载荷与设计参数间的关系,利用幂函数拟合的方法建立了一种轴压开口圆柱薄壳屈曲载荷模型.通过铍青铜开口圆柱薄壳轴向压缩试验对特征值屈曲分析和所建立的轴压开口圆柱薄壳屈曲载荷模型进行了验证.结果表明:特征值屈曲分析方法可用于各向同性材料开口圆柱薄壳结构在两端固支条件下的轴向承载能力与稳定性分析;使用轴压开口圆柱薄壳屈曲载荷模型计算各向同性材料的开口圆柱薄壳在两端固支条件下受轴压作用时的屈曲载荷,最大误差为21%.  相似文献   

13.
一般硬化材料弹塑性轴对称圆柱壳的工程解法   总被引:2,自引:0,他引:2  
在小弹塑性变形条件下,首先将应力写成应变的奇次四项式的幂函数形式,使其相当精确地拟合材料的拉伸曲线,然后,应用线弹性轴对称圆柱壳的位移模态和一待定系数构成弹塑性壳的位移场,再应用最小势能原理确定该系数,从而得到封闭解。  相似文献   

14.
针对三层壳体计算复杂的问题,提出了一种较简单的计算三层壳体的方法——刚度等效法.该方法可以充分利用通用板壳理论的研究成果,直接使用通用板壳理论的公式.使用刚度等效法计算三层壳体可以减少计算工作量,并保留较高的计算精度.分析了通用板壳理论中的公式特点,根据刚度等效原理,给出了三层板的刚度等效计算过程,推导出了三层板的等效弹性模量和等效厚度的计算公式.在算例中,直接把三层板的等效弹性模量和等效厚度代入通用板壳理论的公式,计算出了弹性基础上三层圆柱壳体的位移.通过数值计算对刚度等效方法进行了验证.刚度等效方法可以用于其它多层薄壁壳体的计算.   相似文献   

15.
基于飞机在湿滑跑道着陆时轮胎-水膜-道面相互作用流体力学平衡,得到道面积水水膜厚度、飞机行驶速度和轮胎花纹沟槽深度为动水压强的主要影响因素。以波音737-800的主轮胎为主要研究对象,建立轮胎-水膜-道面相互作用三维模型,基于Fluent软件建立三者相互作用有限元分析模型,采用流体体积函数(VOF)法获得轮胎迎水面水流分布情况和平均动水压强,利用上述有限元模型对动水压强影响因素进行规律性分析,得出动水压强的显著影响因素为道面积水水膜厚度和飞机行驶速度,动水压强与水膜厚度及行驶速度呈正相关,水膜厚度大于3 mm时水膜产生的动水压强增长较快,等于12 mm时动水压强达到并超过胎压(1.47 MPa),存在滑水风险。行驶速度小于100 km/h时,动水压强值小于胎压,不存在滑水风险。基于上述分析结果建立动水压强与水膜厚度、行驶速度和轮胎花纹沟槽深度之间的相关关系式,考虑着陆升力的影响,获得不同降雨条件下波音737-800临界滑水速度及着陆距离延长值,为飞机着陆安全行驶提供重要理论依据。  相似文献   

16.
空间电推进系统的工质为Xe,其工作温度范围为-30~45 ℃,该范围覆盖Xe的临界点。在临界点附近,Xe可能呈现出多种形态,且对温度和压力变化十分敏感,采用传统状态方程在上述范围内计算其物理参数偏差最大可达30%。为解决这一问题,以CH4作为参考流体,建立了一种基于对比态原理的Xe物理特性计算方法。该方法能够对包括气相、液相、超临界区域的所有状态Xe物理性质进行准确计算。试验研究与国外数据对比的结果表明,在整个压力-温度范围内,计算误差小于0.5%。  相似文献   

17.
Reflectors are very critical space elements and can be used not only as solar collectors/reflectors, telecommunication radio antennas and telescopes but also for dual-usage such as solar sails and solar concentrators to probe and sublimate materials from asteroids when actively controlling the surface shape. In this paper, the surface shape of a slack reflector with negligible elastic deformations will be controlled to be a paraboloid by actively modulating the solar radiation pressure (SRP) force using reflectivity control devices (RCDs) across the reflector. Nonlinear static equilibrium equations for an arbitrary infinitesimal within the reflector along the radial, circumferential and transverse directions are established considering the external modulated SRP force and internal tensions respectively. The coupled radial stress differential governing equation and reflectivity algebraic equation are obtained for the paraboloid reflector by the help of the formulation of an inverse problem based on equilibrium equations previously established. Some analytical and numerical analysis for reflectors with ideal and non-perfect SRP force models are performed respectively. The conclusions concerning about how to control the reflector’s surface shape successfully using allowed reflectivity, resulting in reasonable stress range, moreover, how to get the feasible solutions influenced by the reflector’s size parameters, are all based on the presented analytical and numerical analysis.  相似文献   

18.
为了确定复合材料成型过程中气泡的运动条件,利用变截面毛细模拟通道实验系统,研究了气泡在变截面毛细管中的运动行为,分析了气泡长度、毛细管半径及液体种类对气泡垂直穿出行为的影响,并从理论角度推导出气泡穿出的临界压力方程.研究结果表明,气泡垂直穿出变截面毛细通道所需要的临界压力差,随气泡长度和毛细管半径的增大而减小,液体种类对其也有明显影响,实验结果与理论计算值基本吻合.该研究结果将为复合材料成型中工艺参数的优化提供实验依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号