首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ionization of the gas ejections from the Io satellite into the Jovian magnetosphere by the corotating magnetospheric plasma flow is considered. It is shown that the plasma flow velocity at the Io orbit exceeds the critical velocity at which the anomalous electron ionization of the heavy gas components takes place due to collisionless energy transfer from ionized gas atoms to plasma electrons. The energy, number density and spatial distribution of suprathermal electrons is calculated using the quasilinear theory of newly ionized atoms instability in a moving plasma. Saturation of the plasma density build up in a plasma is considered in terms of the instability quenching by Coulomb collisions.  相似文献   

2.
二次包封CMOS器件电子辐照实验研究   总被引:3,自引:1,他引:3  
对CMOS器件54HCT00进行了复合材料的二次包封,研制了试验电路板,在器件加电工作下进行电子辐照试验的动态测试.结果表明,二次封装的器件抗总剂量的能力提高了1—2个数量级,得到了预期的数据和结果.这些工作为商用器件的空间开拓使用提供了很好的途径.  相似文献   

3.
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification.  相似文献   

4.
The initial reduction of the electron density after the injection explosion is shown to be associated with recombination at the adiabatic cooling under the cloud expansion. Primordial thermal ions can disappear in triple collisions almost entirely. Nevertheless, a minor amount of ions is conserved due to the freezing effect. The further rapid increase in the electron concentration may be attributed to the secondary ionization process. It is shown that the cumulative electronic ionization can account for the observed electron density elevation. The modified two-stream instability can provide a longitudinal (anomalous) resistance for the longitudinal electric field required for an avalanche. The electric field and longitudinal currents arise owing to the polarization with ions entrained by the neutral gas across the magnetic field and magnetized electrons moving along the field.  相似文献   

5.
Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If however, as the so-called "Microlesion Theory" allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, "tunnel-lesions" or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. On-going light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu 56Fe ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.  相似文献   

6.
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas.  相似文献   

7.
The role of cosmic ionizing radiation, including heavy ions (HZE-particles) in the induction of mutations at the molecule-, chromosome-, genome- and cell-level is discussed on the basis of different DNA organization in a pro- and eukaryotically compartmented plant system (Arabidopsis thaliana (L.) Heynh.). Data recently obtained on the biological effects of ionizing radiation make it timely to discuss comparatively the evolutionary potentials of space radiation effects in the pro- and eukaryotic genomes (plasmon, plastidom, chondriom, and nucleom) during long duration exposure on space flights.  相似文献   

8.
Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) recently led to results, which will contribute for the estimation of genetic risk for long and/or repeated stay of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effects caused by ionizing radiation in particular stem cells. In this article we present an overview of our space experiments with Arabidopis thaliana seeds. We present first results of investigations on certain damage endpoints (seed germination, plant survival, mutation frequencies), caused by cosmic ionizing radiation in dry dormant plant seeds of Arabidopsis thaliana after different short term (e.g. IML-1 and D-2) and long term (e.g. EURECA and LDEF-1) space exposures. Total dose effects of heavy ions and the other components of the mixed radiation field on damage endpoints and survival after space exposure and gamma-ray preirradiation were obtained. A new method of total dose spectrometry by neutron activation has been applied.  相似文献   

9.
The Russian solar observatory CORONAS-F was launched into a circular orbit on July 31, 2001 and operated until December 12, 2005. Two main aims of this experiment were: (1) simultaneous study of solar hard X-ray and γ-ray emission and charged solar energetic particles, (2) detailed investigation of how solar energetic particles influence the near-Earth space environment. The CORONAS-F satellite orbit allows one to measure both solar energetic particle dynamics and variations of the solar particle boundary penetration as well as relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. We have found that significant enhancements of relativistic electron flux in the outer radiation belt were observed not only during strong magnetic storms near solar maximum but also after weak storms caused by high speed solar wind streams. Relativistic electrons of the Earth’s outer radiation belt cause volumetric ionization in the microcircuits of spacecraft causing them to malfunction, and solar energetic particles form an important source of radiation damage in near-Earth space. Therefore, the present results and future research in relativistic electron flux dynamics are very important.  相似文献   

10.
Heavy particles like protons or heavier ions are different in their biological efficiency when compared to sparsely ionizing radiation. These differences have been attributed to the different pattern of energy deposition in the track of the particles. In radiobiological models two different approaches are used for the characterization of the radiation quality: the continuous dose distribution of the various track structure models and the separation in small compartments inside the track which are used in microdosimetry. In a recent Monte Carlo calculation using the binary encounter approximation as input for the electron emission process, the radial distribution of the dose is calculated for heavy ions. The result of this calculation is compared to other models and used for a qualitative interpretation of the induction of DNA damage by particles.  相似文献   

11.
Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.  相似文献   

12.
The theoretically expected effects of active heavy ion injections in the magnetosphere are reviewed according to their chemical state (plasma or neutral) and their kinetic state (explosion or beam injection) of release. The early-phase effects of such injections (such as ionospheric heating, wave-particle interactions, radiation belt and ring current modifications and anomalous ionization) are briefly discussed. The need for understanding the magnetospheric modification aspects of heavy ion injections becomes more acute in the next decades when the transportation and construction of large-scale space structures would inject increasing volumes of heavy ions in the magnetosphere by both chemical and ion engines. Ion engine exhaust, in the form of a dense relatively cool plasma beam of high drift speed, represents a new regime of heavy ion magnetospheric modification, the effects of which have not been thoroughly investigated either theoretically or observationally. We envisage that the ion engine can be modified into a useful tool for scientific studies of magnetospheric dynamics since it is a source of a variety of ionic species independent of the need for photoionization.  相似文献   

13.
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.  相似文献   

14.
The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.  相似文献   

15.
Linear polarization was observed in the S I 1437Å line in bright flaring points during the soft X-ray emission. The degree of polarization is about 25% and is detected at a signal to noise ratio of 2.9. The polarized electric vector is directed towards disk center to within 3°.This polarization could be due to collisional excitationm of S I by energetic electrons beamed in the vertical direction. We suggest that the heat flux in the region interconnecting the transition zone to the high chromosphere during the gradual phase of a flare could lead to an anisotropic excitation. Then the observed polarization would be due to vertical motions of the transition zone sweeping the preexisting chromosphere.  相似文献   

16.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

17.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   

18.
Simultaneous observations of a microwave burst at 2 and 6 cm wavelengths were carried out with the Very Large Array (VLA). The 6 cm burst source is located close to a magnetic neutral line, presumably near the top of a flaring loop, while the 2 cm emission originates from the footpoints of the loop. It is concluded that the 6 cm emission is dominated by gyrosynchrotron radiation of the thermal electrons in the bulk heated plasma at a temperature of ~ 4 × 107 K, while the 2 cm emission is due to nonthermal particles released and accelerated during the flare process. From the observed low degree of polarization and the lack of the 2 cm source cospatiality with the 6 cm source a magnetic field of 200–350 G and δ ? 4 are estimated in the flare energy release site. A DC electric field flare model is invoked to explain the long delay between the peaks at the two wavelengths. From the delay, the strength of the electric field is estimated to be 0.2–4 μ statvolt cm?1 in the flaring region.  相似文献   

19.
Safe and efficient mission operations in space require an accurate understanding of the physical interactions of space radiation. As the primary space radiation interacts with intervening materials, the composition and spectrum of the radiation environment changes. The production of secondary particles can make a significant contribution to radiation exposure. In this work, the NASA space radiation transport code, HZETRN, is extended to include the transport of electrons, positrons, and photons. The production of these particles is coupled to the initial cosmic ray radiation environment through the decay of neutral pions, which produce high energy photons, and through the decay of muons, which produce electrons and positrons. The photons, electrons, and positrons interact with materials producing more photons, electrons and positrons generating an electromagnetic cascade. The relevant cross sections, transport equation, and solution method are introduced. Electron and positron production in Earth’s atmosphere is investigated and compared to experimental balloon-flight measurements. Reasonable agreement is seen between HZETRN and data.  相似文献   

20.
The abundance ratio of neutral hydrogen to neutral helium, as deduced from interplanetary observations of Lyman-alpha and He 584 A radiation by Mariner 10, is significantly lower than the cosmic abundance ratio of these elements, thus showing that the local interstellar medium (LISM) is partly ionized. It is shown that an important source of ionization of the LISM can be thermal collisions, yielding an ionization degree of about 50% for the hydrogen component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号