首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bistatic radar is a facility for the Earth remote sensing, which uses large spatial diversity between its transmitter and receiver. Nomogram method is proposed to determine the radar's parameters. Analysis of the nomograms has shown that modern onboard radio facilities allow to obtain spatial resolution of about 100 m at the wavelength λ = 3 cm for LEO satellite (H = 350 km). Experiments of bistatic radiolocation of the Earth near the radioshadow zone were provided using telecommunication link “MIR” orbital station — GEO satellite at wavelength λ = 32 cm. For the first time in practice of bistatic radiolocation of the Earth from space reflected signal in radioshadow zone was observed.The analysis of experimental results verified the developed radiophysical model with the value of sea water conductivity σ = 7.0 mo/m and absorption coefficient due to atmospheric oxygen χ = 0.0096±0.0024 dB/km.  相似文献   

2.
The use of oxygen produced on the Moon—called “MOONLOX”—is considered as a propellant component for a reusable Earth-Moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed and the processing concept of a lunar oxygen plant based on fluorination is presented. It is shown that the necessary mass of supply from Earth for MOONLOX-production is an important parameter, which may not be neglected due to its strong influence on the economy. In the ideal case where no supplies from Earth are required a reduction of up to 50% in masses to be launched into low Earth orbit can be obtained for a typical lunar mission with use of MOONLOX compared to a reference scenario with Earth-derived propellant. Mass-saving decreases, however, significantly with increasing supply from Earth until a critical supply-rate is reached—measured in percentage of MOONLOX-mass produced and consumed—beyond which mass-saving and thus economically promising lunar oxygen production is no longer possible. This critical supply-rate depends on the scenario for MOONLOX-utilization and is much larger in the case of in situ use of MOONLOX on the lunar surface, e.g. as ascent propellant for the lunar bus, than in the case of export for complete refuelling of both space vehicles. The latter scenario therefore requires significantly more autonomy for MOONLOX-production. The reduction of masses to be transported into low Earth orbit and corresponding MOONLOX-consumption define for given specific Earth-to-LEO transportation costs an upper limit on MOONLOX-production costs beyond which economic benefit is not possible. Depending on the MOONLOX-utilization strategy this upper limit varies between 3000 and 55000 $/kg for current Earth-to-LEO transportation costs.  相似文献   

3.
A laboratory experiment on modeling the magnetospheric generator of the field-aligned currents and the Earth’s transpolar potential in the absence of IMF is illustrated. The measurements of the total field-aligned current in the generator shorted mode and the transpolar potential in the circuit disconnection mode made it possible to determine the generator internal resistance. A model that explains the saturation current and internal resistance by the feedback between the field-aligned current and plasma flank motions has been proposed. This feedback is described through the effective resistance, which is proportional to the flow rate and the ratio of the boundary layer to the dimension of the magnetosphere. For the experimental conditions, the calculated generator resistance was in good agreement with the measured value. The estimates for the Earth’s magnetosphere indicate that the MHD generator internal resistance in the boundary layer is usually much lower than the reverse integral conductivity of the ionosphere.  相似文献   

4.
“Mars Direct”, is an approach to the space Exploration Initiative that allows for the rapid initiation of manned Mars exploration, possibly as early as 1999. The approach does not require any on-orbit assembly or refueling or any support from the Space Station or other orbital infrastructure. Furthermore, the Mars Direct plan is not merely a “flags and footprints” one-shot expedition, but puts into place immediately an economical method of Earth-Mars transportation, real surface exploratory mobility, and significant base capabilities that can evolve into a mostly self-sufficient Mars settlement. This paper presents both the initial and evolutionary phases of the Mars Direct plan. In the initial phase, only chemical propulsion is used, sendig 4 persons on conjunction class Mars exploratory missions. Two heavy lift booster launches are required to support each mission. The first launch delivers an unfueled Earth Return Vehicle (ERV) to the martian surface, where it fills itself with methane/oxygen bipropellant manufactured primarily out of indigenous resources. After propellant production is completed, a second launch delivers the crew to the prepared site, where they conduct regional exploration for 1.5 years and then return directly to Earth in the ERV. In the second phase of Mars Direct, nuclear thermal propulsion is used to cut crew transit times in half, increase cargo delivery capacity, and to create the potential for true global mobility through the use of CO2 propelled ballistic hopping vehicles (“NIMFs”). In this paper we present both phases of the Mars Direct plan, including mission architecture, vehicle designs, and exploratory strategy leading to the establishment of a 48 person permanent Mars base. Some speculative thoughts on the possibility of actually colonizing Mars are also presented.  相似文献   

5.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

6.
Fluid dynamics aspects for material science experiments may be treated with respect to purely space experiments and preparatory experiments on the ground. Preparatory experiments are necessary because little experience of material science experiments in space is available. Preparatory experiments on earth are needed in the field of surface tension and viscosity, surface layers, forming and positioning of liquids. Concerning space experiments the following subjects may be treated: convection phenomena, capillarity and kinetics of liquids. Convection phenomena (Marangoni convection) can be studied without disturbance by gravitation which has a considerable technological relevance. Under space conditions the kinetics of fluids may be studied in large model structures with changing capillarity and wetting properties.  相似文献   

7.
Mechanisms of formation of cyclonic vortices in the tropical atmosphere of the Earth are investigated in the intratropical zone of convergence using numerical simulation made with the complete system of equations of gas dynamics taking into account transport of infrared radiation, phase transitions of water vapor into microdrops of water and ice particles, and sedimentation of these drops and ice particles in the field of gravity force. Observational data on the structure of dominant air streams, which are formed in the intratropical zone of convergence over the North Atlantic in the periods of its highest thermodynamic intensity and instability, are used in the initial and boundary conditions of the model. Formation of cyclonic vortex flows is obtained numerically at sufficiently strong bending of the intratropical zone of convergence. The results of numerical modeling are compared with the data of satellite microwave monitoring: global radio thermal fields of the Earth from the electronic collection GLOBAL-Field allowing one to study the structure of atmospheric motions in a wide range of space-time scales.  相似文献   

8.
A stable, observable liquid-gas interface was realized in an experimental cell (3 × 2 × 1 cm) under microgravity conditions. The liquid used was an aqueous 6.24 10?3 molal solution of n-heptanol. A temperature gradient, established at the interface, resulted in the build-up of a Marangoni convection cell with the liquid flowing in an unusual direction (i.e. at the surface the liquid flowed from the cold to the hot side).The same experiment on Earth gives rise to a Marangoni cell superimposed on buoyancy cells. The Marangoni and the buoyancy cells then turn in opposite directions.  相似文献   

9.
In oceanographics situations where salt fingers may be an important mechanism for the transport of heat and salt in the vertical direction, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by wind shear, and how the vertical fluxes of heat and salt are changed by wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of instability developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers under a moderate rate of shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are, respectively, in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is stable under a small wind shear and the LR mode is stable for a higher wind shear.  相似文献   

10.
A mathematical model of perturbed rotational motions of the deformable Earth, adequate to astrometric measurements of the International Earth Rotation Service (IERS), is constructed using methods of celestial mechanics. It is based on the gravitational tidal mechanism of the influence of the Sun and Moon. The authors have found fine resonant structure of interaction of long-period zonal tides (annual, semi-annual, monthly, and two-week) with diurnal and semidiurnal tides. This essential property is reliably confirmed by spectral analysis of the IERS data. In this paper, a numerical simulation of tidal irregularities of the Earth’s axial rotation is performed. The primary emphasis is placed on the analysis of variations of the duration of the day on short time intervals with periods of one year and less (intra-annual oscillations) and their forecast.  相似文献   

11.
Meshkov D  Rykova M 《Acta Astronautica》1995,36(8-12):719-726
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the “active” NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity.  相似文献   

12.
《Acta Astronautica》2013,82(2):411-418
The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.  相似文献   

13.
Started 16 years ago, the ESEME program has led to a number of important findings. We note a simple and unified view of phase transitions, which has been applied to the development of biological patterns, and a very fast thermalization mode that we coined the “piston effect”. This effect has been applied to control the cryogenic reservoirs of the Ariane 5 rocket. All these findings have been obtained thanks to the good coordination of the ESA and CNES space facilities and the construction of high technology experimental modules. The future of the program is linked to the CNES DECLIC facility and the ESA Fluid Science Laboratory (FSL). DECLIC has been designed to increase the temperature regulation above the critical point of water (550 K) so as to investigate chemical reactions under conditions of supercritical water, and in relation to the promising applications of waste treatment by supercritical oxidation. Thanks to the construction of a special vibrational Experiment Container for FSL, the thermal and mechanical behavior of fluids under forced vibration can be investigated. The results of such studies will help to estimate the effect of g-jitter on fluids, and control gases and liquids in space.  相似文献   

14.
In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.  相似文献   

15.
Structure and thermal control of panel extension satellite (PETSAT)   总被引:1,自引:0,他引:1  
Panel ExTension SATellite (PETSAT) [S. Nakasuka, Y. Nakamura, Panel extension satellite (PETSAT)—a novel satellite concept consisting of modular, functional and plug-in panels, in: 24th International Symposium on Space Technology and Science, invited talk, 2004-o-2, 2004 [1]] is a satellite which is made of several “functional panels”. Each panel has a special dedicated function and various combinations of different kinds of functional panels enable PETSAT to deal with various mission requirement. Development of PETSAT requires four interface requirements. These are mechanical interface, thermal interface, electrical interface and information interface. In this paper, mechanical interface and thermal interface of PETSAT are especially focused on and introduced. In the development of PETSAT issues about mechanical interface corresponds to panel structure and deployment mechanism. The structure of PETSAT is designed so as to have light weigh, enough space for devices and high stiffness. And deployment system has simple mechanism to avoid vacuum metalizing and improve reliability. On the other hand, approaches for thermal interface [K. Higashi, S. Nakasuka, Y. Sugawara, H. Sahara, K. Koyama, C. Kobayashi, T. Okada, Thermal control of panel extension satellite (PETSAT), in: 25th International Symposium on Space Technology and Science, 2006-j-02, 2006 [2]] are homogenization of temperature within panel and between panels. Homogenization of temperature within panels can be realized by heat lane plate, and that between panels is realized by magnetic fluid loop with magnetic heat pump. These approaches for mechanical and thermal interface are demonstrated in SOHLA-2 [Y. Sugawara, S. Nakasuka, T. Eishima, H. Sahara, Y. Nakamura, K. Koyama, C. Kobayashi, T. Okada, Elemental technologies for realization of panel extension satellite (PETSAT), in: 25th International Symposium on Space Technology and Science, 2006-J-01, 2006 [3]] that is satellite of technology demonstration for PETSAT.  相似文献   

16.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

17.
航天器密封舱在地面模拟试验中常通过降压法抑制自然对流的影响,但降压比的选择 往往缺乏定量准则,这使得自然对流的抑制效果得不到保证。使用数值模拟方法确定临 界压力比,以几种典型航天器密封舱内的流动换热情况为例,分析了不同Gr/Re 2 数和压力比下密封舱内的流动换热情况。得到了舱内气体温度分布和对流换热系数。通 过比较空间情况和地面情况的计算结果,分析了自然对流给流动换热带来的影响,给出了判 断临界压力的准则式,并给出了临界Gr/Re 2数。结果表明:临界压力 的准则关系和密封舱的形状和内部结构无关。
  相似文献   

18.
Claudio Maccone   《Acta Astronautica》2004,55(12):991-1006
A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth–Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth).

We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement.

An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to:

1. Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
2. add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
3. encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see “which asteroids could be diverted by which missiles”, even in the very simplified scheme outlined here.

Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could possibly mark the beginning of an “all embracing” mathematical vision of Planetary Defense beyond all learned activities, dramatic movies and unknown military plans covered by secret.  相似文献   


19.
(Instrument Developments for Applications in Remote Sensing, Photogrammetry, Geophysics and Geodesy) The Modular Optoelectronic Multispectral Seanner MOMS-01, a CCD camera using the push-broom scanner principle, is presented in this paper in its flight configuration. This instrument will be the first European-built spaceborne unaging system for remote sensing applications (launch with Shuttle flight No. 7).Follow-on developments of this initial two-channel version are oriented to an extension of capabilities by a panchromatic high-resolution stereoscopic module for thematic mapping and two additional spectral channels in the reflective IR (up to 2.3 μm) offering a high interpretation potential for future earth resources exploration missions. Furthermore the subjects of advanced laser technology studies are introduced: A picosecond pulse laser system for detection of tectonic motions and for geodetic application, a CO laser for ultra precise range rate determination (Earth potential and Geoid) and a laser range finder for intersatellite distance measurements.  相似文献   

20.
The Orbital Cable System (OCS) consists of a vehicle with an engine, a long connecting cable (string) and a satellite probe for low altitude geophysical explorations. The vehicle orbits the Earth at an altitude of 200–250 km and tows a probe at an altitude of 100–150 km. The air drag is compensated by the vehicle engine thrust. In the OCS dynamics study the cable weight, elasticity and air drag are taken into account. The OCS stationary motions are found, and stability of these motions is investigated. The OCS periodical motions that are close to the stationary motions are found. Simple ways of the OCS deployment in orbit are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号