首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lui  A.T.Y. 《Space Science Reviews》2004,113(1-2):127-206
Space plasmas present intriguing and challenging puzzles to the space community. Energy accessible to excite instabilities exists in a variety of forms, particularly for the magnetospheric environment prior to substorm expansion onsets. A general consensus of the pre-expansion magnetosphere is the development of a thin current sheet in the near-Earth magnetosphere. This review starts with a short account of the two major substorm paradigms. Highlights of some observations pertaining to the consideration of potential plasma instabilities for substorm expansion are given. Since a common thread of these paradigms is the development of a thin current sheet, several efforts to model analytically a thin current sheet configuration are described. This leads to a review on the instability analyses of several prominent candidates for the physical process responsible for substorm expansion onset. The potential instabilities expounded in this review include the cross-field current, lower-hybrid-drift, drift kink/sausage, current driven Alfvénic, Kelvin-Helmholtz, tearing, and entropy anti-diffusion instabilities. Some recent results from plasma simulations relevant to the investigation of these plasma instabilities are shown. Although some of these instabilities are generally conceived to be excited in spatially localized regions in the magnetosphere, their potentials in yielding global consequences are also explored.  相似文献   

2.
This paper reviews recent research on the theory and computer simulations of electromagnetic ion/ion instabilities and their consequences in space plasmas. Ion/ion instabilities are growing modes in a collisionless plasma driven unstable by the relative streaming velocity v 0of two distinct ion components such that v 0is parallel or antiparallel to the uniform background magnetic field B 00. The space physics regimes which display enhanced fluctuations due to these instabilities and which are reviewed in this paper include the solar wind, the terrestrial foreshock, the plasma sheet boundary layer, and distant cometary environments.  相似文献   

3.
Lapenta  Giovanni 《Space Science Reviews》2003,107(1-2):167-174
A new paradigm is suggested for 3D magnetic reconnection where the interaction of reconnection processes with current aligned instabilities plays an important role. According to the new paradigm, the initial equilibrium is rendered unstable by current aligned instabilities (lower-hybrid drift instability first, drift-kink instability later) and the non-uniform development of kinking modes leads to a compression of magnetic field lines in certain locations and a rarefaction in others. The areas where the flow is compressional are subjected to a driven reconnection process. In the present paper we illustrate this series of events with a selection of simulation results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The V-shock is identified as the primary mechanism for the acceleration of electrons responsible for the discrete aurora. A brief review of the evidence supporting the V-shock model is given, including the dynamics of auroral striations, anomalous motion of barium plasma at high altitudes and in-situ observations of large electric fields. The V-shock is a nonlinear, n = 0 ion cyclotron mode soliton, Doppler shifted to zero frequency. The V-shock is also shown to be a generalization of the one-dimensional double layer model, which is an ion acoustic soliton Doppler shifted to zero frequency. The essential difference between the double layer theory and the theory for the oblique, current-driven, laminar electrostatic shock is that the plasma dielectric constant in directions perpendicular to the magnetic field is c 2/V a /2 , where V a is the Alfvén velocity; but the plasma dielectric constant parallel to the magnetic field is unity. Otherwise, in the limit that the shock thickness perpendicular to the magnetic field is much larger than an ion gyroradius, the equations describing the double layer and the oblique shock are the same. The V-shock, while accounting for the acceleration of auroral electrons, requires an energy source and mechanism for generating large potential differences perpendicular to the magnetic field. An energy source is the earthward streaming protons coming from the distant magnetospheric tail. It is shown how these protons can be energized by the cross-tail electric field, which is the tailward extension of the polar cap dawn-to-dusk electric field. The local, large cross-field potential differences associated with the V-shock are seen to be the result of a non-linear, E × B drift turbulent cascade which transfers energy from small- to large-scale sizes. Energy at the smallest scale sizes comes from the kinetic energy in the ion cyclotron motion of the earthward streaming protons, which are unstable against the zero-frequency flute-mode instability. The review points out the gaps in our understanding of the mechanism of the diffuse aurora and the mechanism of the auroral substorm.  相似文献   

5.
We present results from hybrid simulations (kinetic ion/fluid electron) of the interaction of interstellar pickup ions with collisionless shocks. Since cross-field transport is unphysically suppressed in the one-dimensional geometry used here, an ad hoc scattering algorithm is used to model this effect. This is a necessary step to accelerate the pickup ions from their initial low energies at quasi-perpendicular shocks to the high energies which are often observed associated with traveling interplanetary shocks by Ulysses.  相似文献   

6.
7.
Computer modeling of test particle acceleration at oblique shocks   总被引:1,自引:0,他引:1  
We review the basic techniques and results of numerical codes used to model the acceleration of charged particles at oblique, fast-mode, collisionless shocks. The emphasis is upon models in which accelerated particles (ions) are treated as test particles, and particle dynamics is calculated by numerically integrating along exact phase-space orbits. We first review the case where ions are sufficiently energetic so that the shock can be approximated by a planar discontinuity, and where the electromagnetic fields on both sides of the shock are defined at the outset of each computer run. When the fields are uniform and static, particles are accelerated by the scatter-free drift acceleration process at a single shock encounter. We review the characteristics of scatter-free drift acceleration by considering how an incident particle distribution is modified by interacting with a shock. Next we discuss drift acceleration when magnetic fluctuations are introduced on both sides of the shock, and compare these results with those obtained under scatter-free conditions. We describe the modeling of multiple shock encounters, discuss specific applications, and compare the model predictions with theory. Finally, we review some recent numerical simulations that illustrate the importance of shock structure to both the ion injection process and to the acceleration of ions to high energies at quasi-perpendicular shocks.  相似文献   

8.
小攻角高超声速钝锥边界层失稳特性   总被引:2,自引:1,他引:1  
利用高阶紧致格式,采用直接数值模拟(DNS)和线性稳定性(LST)分析方法,对高超声速边界层的失稳机制和转捩特点进行了研究.通过对马赫数为6的2?攻角高超声速钝锥边界层的稳定性分析发现:小攻角高超声速钝锥边界层存在多枝不稳定模态;周向速度使钝锥的稳定性特征与不考虑周向速度时有本质的差别;转捩线在接近背风面处出现拐折现象是由失稳模态发生转换引起的.   相似文献   

9.
Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.  相似文献   

10.
We review the evidence for electron acceleration in the heliosphere putting emphasis on the acceleration processes. There are essentially four classes of such processes: shock acceleration, reconnection, wave particle interaction, and direct acceleration by electric fields. We believe that only shock and electric field acceleration can in principle accelerate electrons to very high energies. The shocks known in the heliosphere are coronal shocks, traveling interplanetary shocks, CME shocks related to solar type II radio bursts, planetary bow shocks, and the termination shock of the heliosphere. Even in shocks the acceleration of electrons requires the action of wave particle resonances of which beam driven whistlers are the most probable. Other mechanisms of acceleration make use of current driven instabilities which lead to electron and ion hole formation. In reconnection acceleration is in the current sheet itself where the particles perform Speiser orbits. Otherwise, acceleration takes place in the slow shocks which are generated in the reconnection process and emanate from the diffusion region in the Petschek reconnection model and its variants. Electric field acceleration is found in the auroral zones of the planetary magnetospheres and may also exist on the sun and other stars including neutron stars. The electric potentials are caused by field aligned currents and are concentrated in narrow double layers which physically are phase space holes in the ion and electron distributions. Many of them add up to a large scale electric field in which the electrons may be impulsively accelerated to high energies and heated to large temperatures.  相似文献   

11.
Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long length scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.  相似文献   

12.
13.
The magnetic field and plasma data from the ISEE 1, 2, and 3 spacecraft have greatly increased our knowledge of the quasi-parallel collisionless shock in space. Hybrid-code simulations have provided us with valuable insights into the physics of the quasi-parallel shock. Unfortunately, theoretical understanding of the nonlinear physics of the quasi-parallel shock is still in a qualitative stage of development. Generation of large-amplitude whistler waves and hydromagnetic waves observed in the quasi-parallel shock has been discussed either in terms of linear instabilities or qualitative nonlinear arguments. It appears that the ion reflection, ion heating, and leakage of the shock-heated downstream ions at the quasi-parallel shock can all be explained in terms of nonadiabatic scatterings of ions by the large-amplitude whistler-magnetosonic waves with frequencies near the ion gyrofrequency and wavelength near the ion inertial length. The nonadiabatic scattering is defined by the non-conservation of the magnetic moment. Future study of the quasi-parallel shock should focus on developing quantitative theoretical models for the nonlinear physical processes fundamental to the quasi-parallel shock.  相似文献   

14.
对二台发动机二次地面静止试验结果进行了诊断,确认存在纵向中频声不稳定燃烧。简要地回顾了固体火箭发动机不稳定燃烧问题的历史,同时从机理出发指出不稳定燃烧具有“多发性”、“随机性”的原因。从而,结合其产生的危害性的提出了对其研究的必要性。提出了研究这一问题的最基本的工程方法。  相似文献   

15.
The electron and ion beams which have been detected on many rockets and satellites are of particular interest because beam particles carry information about both the ionosphere and the magnetosphere out to the distant tail. Stability analyses have shown that even the most dramatic beams have evolved until the particle distribution functions are only weakly unstable. The shortest plasma wave growth lengths in the auroral region are usually comparable to the size of an arc. The resulting clearest electron beams generally are relatively minor features of distribution functions which are dominated by plateaus, loss cones, broad or stretched out field aligned features, and hot or cold isotropic components. The true electron beams therefore represent a small fraction of the total electron number density. Ion beams carry a much larger fraction of all ions, but also are only weakly unstable. The electron beams seen at low altitudes can drive whistlers (both electromagnetic and electrostatic, including lower hybrid waves) and upper hybrid waves, which may be particularly intense near electron gyroharmonics. Ion beams can drive low frequency electromagnetic waves that are related to gyrofrequencies of several ion species as well as ion acoustic and electrostatic ion cyclotron waves. These latter waves can be driven both by the drift of ion beams relative to cold stationary ions and by the drift of electrons relative to either stationary or drifting ions. Abrupt changes or boundaries in the electron and ion velocity space distribution functions (e.g. beams and loss cones) have been analyzed to provide information about the plasma source, acceleration process, and regions of strong wave-particle interactions. Fluid analyses have shown that upgoing ion beams carry a great deal of momentum flux from the ionosphere. This aspect of ion beams is analyzed by treating the entire acceleration region as a black box, and determining the forces that must be applied to support the upgoing beams. This force could be provided by moderate energy (10's of eV) electrons which are heated near the lower border of the acceleration region. It is difficult to use standard particle detectors to measure the particles which carry electric current in much of the magnetosphere. Such measurements may be relatively easy within upgoing ion beams because there is some evidence that few of the hard-to-measure cold plasma particles are present. Therefore, ion beam regions may be good places to study fluid or MHD properties of magnetospheric plasmas, including the identification of current carriers, a study of current continuity, and some aspects of the substorm and particle energization processes. Finally, some of the experimental results which would be helpful in an analysis of several magnetospheric problems are summarized.  相似文献   

16.
In this article, we discuss the idea of a hierarchy of instabilities that can rapidly couple the disparate scales of a turbulent plasma system. First, at the largest scale of the system, L, current carrying flux ropes can undergo a kink instability. Second, a kink instability in adjacent flux ropes can rapidly bring together bundles of magnetic flux and drive reconnection, introducing a new scale of the current sheet width, ?, perhaps several ion inertial lengths (δ i ) across. Finally, intense current sheets driven by reconnection electric fields can destabilize kinetic waves such as ion cyclotron waves as long as the drift speed of the electrons is large compared to the ion thermal speed, v D ?v i . Instabilities such as these can couple MHD scales to kinetic scales, as small as the proton Larmor radius, ρ i .  相似文献   

17.
K. Ohki 《Space Science Reviews》1989,51(1-2):215-228
Observational features concerning solar energetic particles are compactly reviewed with some emphasis on the spectra and time histories. Velocity dependent characteristics in the energy spectra are pointed out, and compared to the results of the interplanetary shocks. A shock drift acceleration is introduced in order to interpret the observational features, especially a very fast acceleration to MeV energies within an order of second. There is a strong evidence of the shock drift acceleration in the interplanetary shocks. When some conditions are satisfied in the corona, only one or several encounters of particles with a near perpendicular shock accelerates protons to gamma-ray emitting energies (> 10 MeV). Pre-acceleration is inevitable for any kind of acceleration mechanisms in solar flares. To fulfill the requirements from the abundance ratios between various species of accelerated ions, pre-acceleration to the same velocities before the injection into a main acceleration process turns out to be absolutely necessary.  相似文献   

18.
Interplanetary shock observations since the prior Solar Terrestrial Physics Symposium in 1978 are reviewed. Since the interval coincides with the recent solar maximum, emphasis is placed on shocks associated with transient solar phenomena, including coronal transients and eruptive prominences as well as flares. A good correlation between shocks and Storm Sudden Commencements has persisted into the recent maximum. Shocks have been identified that are associated with disappearing filaments and coronal transients rather than with flares. Significant progress has been made in the indirect observation of shocks near the Sun as a result of radio wave measurements in interplanetary space and measurement of the scintillation and spectral broadening of spacecraft radio transmissions. Preliminary results regarding the thickness of interplanetary shocks have appeared. Several quasi-parallel shocks propagating more nearly along, rather than across, the magnetic field have been identified. The plasma drivers accompanying interplanetary shocks have received increased attention and distinctive features have been found in electron, ion and magnetic field data.  相似文献   

19.
单扇区、扇形、全环燃烧室热声不稳定性试验和模拟研究   总被引:1,自引:1,他引:0  
贫油分级燃烧室在单扇区、扇形、全环燃烧室试验台上均会发生自激周期性燃烧不稳定现象,但振荡模态和频率存在差异.为研究这一差异并建立三者之间的联系,同时验证热声不稳定性模拟方法,对三种试验台的燃烧不稳定性进行了试验和数值模拟研究,获得了不同试验台的振荡特性,并对数值模拟和试验结果进行了对比.结果 表明:全环燃烧室存在两个失...  相似文献   

20.
This study is concerned with the experimental and theoretical investigation of the combustion instabilities in a premixed swirl combustor. It is focused on the effects of the swirl mixing distance on the intrinsic thermoacoustic mode. The swirler as an origin of the swirling flow is also the source of the flow disturbance, which has effects on the flame response. The location of the swirler is varied in the experiment to study the effect on combustion instabilities and flame transfer functions. ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号