首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
牛禄  程惠尔 《推进技术》2001,22(4):290-294
提出液体火箭发动机层板推力室再生冷却通道传热过程的数理模型。采用通用形式控制方程处理冷却剂紊流换热和通道材料导热的共轭传热问题,计算采用LVEL紊流模型,并考虑冷却剂(氢)的热物性参数随温度和压力的变化及层板材料热物性随温度的变化。结果表明,采用大高宽比、小气壁厚度的通道设计,可显著提高再生冷却能力,降低室壁温度和温差。采用对流换热系数和热物性为常数的简化处理会引起很大误差。  相似文献   

2.
对液体火箭发动机推力室发汗冷却传热过程的二维局部非热平衡模型进行了数值计算。计算中采用了正交曲线坐标系(贴体坐标),并计及了冷却剂(氢)的热物性参数随温度和压力的剧烈变化及固体壁沿轴向的导热。结果表明:推力室多孔壁面中靠近燃烧室的部分温度梯度很大;固体骨架与冷却剂的温度差异在推力室内壁面上最大;推力室多孔壁面材料导热系数的提高有利于降低壁面温度及温度梯度;随着冷却剂流量的增大,推力室壁中的最高温度明显下降;若设计合理,发汗冷却所需要的冷却剂的量只占总流量的2%左右。  相似文献   

3.
通道深宽比对液体火箭发动机推力室再生冷却的影响   总被引:2,自引:1,他引:1  
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟, 冷却工质为氢气, 其密度、导热系数、动力粘度随着温度和压力而变化, 冷却剂比热容及金属固体物性随着温度而变化.计算采用标准k-ε两方程湍流模型及气-固耦合算法.保持再生冷却通道个数及冷却工质进口流量不变, 通过改变通道肋壁厚度来改变冷却通道深宽比, 研究不同深宽比对推力室壁面再生冷却效果的影响规律.计算结果表明:增加通道深宽比对推力室壁面能够起到强化传热的作用, 但同时也增加了冷却通道的进出口压差.这是由于冷却工质流速的增高, 从而提高了推力室传热系数.随着深宽比不断增加, 推力室再生冷却效果趋于饱和, 而冷却工质进出口压降则不断上升.   相似文献   

4.
姜培学 《推进技术》1999,20(4):17-21
对液体火箭发动机推力室发汗冷却传热过程的二维局部非热平衡模型进行了数值计算,计算吸要用了正交曲线坐标系(贴体坐标)并计及冷却剂(氢)的热物性参数随温度和压力的剧列变化及固体壁沿轴向的导热,结果表明,推力室多孔壁面中靠近燃烧室的部分温度梯度很大,固体骨架与冷却剂的温度差异在推力室内壁面上最大,推力室多孔壁面材料导热系数的提高有利于降低壁面温度及温度梯度;随着冷却剂流量的增大,推力室臂吉的最高温度明显  相似文献   

5.
膨胀循环推力室再生冷却换热的数值模拟   总被引:1,自引:0,他引:1  
韩非  刘宇 《航空动力学报》2007,22(11):1939-1946
为了解液体火箭发动机膨胀循环推力室再生冷却换热特性,采用数值模拟方法,研究了冷却剂流动方式、推力室圆柱段长度、圆柱段室壁加肋和气壁面粗糙度等因素对冷却通道压降、冷却剂温升、壁面热流密度和温度分布等换热特性的影响.计算过程中采用k-ε双方程湍流模型.计算结果表明:采取顺流冷却要比逆流冷却的冷却通道压降低,但同时冷却剂温升也低;对于室壁加肋结构,在肋个数相同而只改变肋高度的情况下,总换热量正比于总换热面积.   相似文献   

6.
韩非  刘宇 《航空动力学报》2006,21(6):1116-1122
为了解液体火箭发动机膨胀循环推力室再生冷却换热特性,对某一参考发动机推力室和另外两种面积比的膨胀循环推力室建立三维计算模型,采用数值模拟的方法,考察冷却剂的温升、冷却通道压降以及推力室内壁面温度和热流密度的分布情况.重点比较了不同燃烧室圆柱段长度、冷却剂不同流动方式以及不同面积比对以上结果的影响.计算过程中采用二阶迎风格式离散控制方程.计算结果表明:采用逆流冷却时,通过加长推力室圆柱段长度使推力室受热面积增加70%后,冷却剂温升提高了一倍左右;对膨胀循环推力室进行再生冷却时,采用顺流冷却要比逆流冷却的冷却通道压降低,但同时冷却剂温升也较低,并且对喉部壁面的冷却效果较差.  相似文献   

7.
向纪鑫  孙冰  徐华 《推进技术》2017,38(11):2580-2587
为了降低液体火箭发动机推力室壁温和冷却剂压力损失,对再生冷却通道尺寸参数进行优化设计。以再生冷却通道高度、宽度、数目和推力室内壁厚为设计变量,推力室平均壁温、最高壁温和冷却剂压力损失为目标函数,采用Box-Behnken试验设计方法获取样本点,根据样本点建立再生冷却通道计算模型,利用传热分析程序针对不同方案得到目标函数关于设计变量的二阶响应面模型,分别用梯度投影、积极集法和遗传算法进行优化计算,同时利用逐步回归法和样本点更新技术提高模型精度。计算结果表明,建立的响应面模型能以较小的计算成本准确地反映设计变量和目标函数的关系;存在一个最佳的通道高宽比和通道数目使得冷却通道传热特性最优;对于两种不同优化方案,优化设计后的目标函数最多比初始设计降低13.5%和23.5%;使用遗传算法优化后得到的目标函数值最低。  相似文献   

8.
一种计算再生冷却推力室温度场的方法   总被引:7,自引:5,他引:7  
为了能够快速而准确地得到再生冷却推力室的温度分布,建立了一种计算再生冷却推力室温度场的方法。首先建立了轴对称推力室的一维冷却模型,并使用换热经验公式,得到了推力室壁面在轴线方向上的温度分布;其次建立了推力室的冷却套二维导热模型,使用数值模拟的方法和一维计算的结果,得到了冷却套的温度场。然后使用这种方法研究了气壁材料、气壁厚度和冷却液流量对推力室再生冷却的影响,获得了比较满意的结果。从计算时间和准确性来说,这种方法能够为推力室的优化设计和性能估算提供参考。   相似文献   

9.
气壁镀镍和冷却剂入口对再生冷却的影响   总被引:2,自引:0,他引:2  
康玉东  孙冰 《航空动力学报》2010,25(12):2834-2838
考虑冷却剂入口模型及气壁镀镍,对液体火箭发动机推力室再生冷却通道和冷却剂进行三维流动与传热耦合计算.采用经验公式计算燃气侧对流及辐射换热,冷却剂为甲烷,考虑其物性随温度和压力的变化.所得结果表明:冷却剂入口二次流及突扩流场的叠加,使局部压力损失变大,影响进口下游较大区域流动传热状况;气壁镀镍能提高气壁的耐高温性,降低气壁锆铜的温度.   相似文献   

10.
液体火箭发动机推力室冷却通道传热优化计算   总被引:4,自引:2,他引:4       下载免费PDF全文
采用标准K-ε两方程湍流模型对液体火箭发动机推力室再生冷却通道三维湍流流动与传热过程进行了数值预测,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,通过两种优化方案来改变推力室冷却通道的深宽比。方案一为保持冷却通道的深度及肋宽不变,通过改变推力室壁面通道个数来改变通道的深宽比,方案二为保持通道数目不变,通过增加或降低通道高度来改变通道的深宽比。以此计算在不同通道深宽比下推力室壁面的传热特性,并进行了优化分析。计算结果表明:存在着一个最佳冷却通道个数,使得推力室壁面再生冷却效果达到最佳;在相同质量流量下,降低通道高度能够强化推力室传热,但同时增加了进出口压差。  相似文献   

11.
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines (LPRE). For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. Traditionally, approximately square cross sectional cooling channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas-side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio and number of cooling channels on gas-side wall and coolant temperatures and pressure drop in cooling channels.  相似文献   

12.
液体火箭发动机推力室复合冷却流动与传热研究   总被引:2,自引:1,他引:2       下载免费PDF全文
为了预测液体火箭发动机推力室的复合冷却性能,建立了推力室再生冷却通道和超临界氢的三维仿真模型以及推力室内燃气和超临界氢膜的轴对称二维仿真模型。通过边界耦合发展了液体火箭发动机推力室复合冷却流动与传热的数值仿真方法。对航天飞机主发动机推力室内部燃气、超临界冷却膜、室壁和再生冷却剂进行了流动与传热耦合计算仿真研究。研究表明,仿真方法可较好地预测推力室燃气及再生冷却剂的流动和传热,计算得到航天飞机主发动机的燃气侧壁面最高热流密度为129MW/m2,最高壁温为885K,冷却剂温升为192K,压降为8.8MPa,结果与已有数据吻合较好。模型和仿真方法可用于液体火箭发动机推力室冷却系统传热计算和冷却结构的优化设计。  相似文献   

13.
推力室喉部层板发汗冷却段的结构设计分析   总被引:2,自引:1,他引:2       下载免费PDF全文
根据层板单元的热分析结果和层板发汗冷却推力室固有的结构特点,提出这种先进发动机冷却方案的设计原理和结构参数的计算公式,结合一台50kN发动机推力室喉部改再生冷却为发汗冷却的改形设计,分析其层板发汗冷却段喉部的设计方法和主要结构尺寸的计算结果。还比较了全再生冷却和发汗冷却两种冷却方式下发动机推力室的温度、热流密度和重量。对先进层板发汗冷却推力室的结构设计提供了参考。  相似文献   

14.
液氧甲烷发动机台阶型冷却通道的耦合传热特性   总被引:1,自引:0,他引:1  
孙冰  宋佳文 《航空动力学报》2016,31(12):2972-2978
为了研究液氧甲烷发动机再生冷却通道中跨临界甲烷的流动和传热特性,以及冷却通道较大幅度的突扩突缩对冷却效果的影响,采用整场直接耦合的方法对推力室三维耦合传热进行了数值模拟,考虑了燃气的非平衡流动.通过计算得到了推力室三维温度场和流场.计算结果表明:由于喉部截面附近存在较强的二次流,燃气侧壁面温度的最大值出现在喉部上游.由于突扩突缩处存在较强的旋涡运动,冷却剂的湍流强度增强,冷却剂侧表面传热系数显著提高,燃气侧壁面温度出现局部极小值,同时也产生了较大的局部损失.由于铜内衬热阻比镍外套热阻小得多,从燃烧室进入的大部分热量在冷却通道底面和侧面被冷却剂吸收.冷却通道底面的温度和热流密度沿程变化比顶面更剧烈.  相似文献   

15.
轴对称喷管与圆转方喷管冷却换热特性的比较   总被引:2,自引:2,他引:0  
韩非  刘宇 《航空动力学报》2007,22(11):1947-1953
为了解和比较轴对称喷管与圆转方喷管不同的再生冷却换热特性,分别对轴对称喷管(推力室)与圆转方喷管(推力室)建立计算模型,通过数值模拟的方法重点研究和比较了轴对称喷管与圆转方喷管的流场、壁面热流密度和温度分布、冷却剂温升和冷却通道压降等换热特性.计算结果表明:圆转方喷管由于型面不连续,在转方位置后壁面出现了温度和热流密度的峰值,从而导致沿周向壁面温度和热流密度的分布也不均匀.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号