首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The findings of Deep Impact on the structure and composition of Tempel-1 are compared with our experimental results on large (20 cm diameter and up to 10 cm high) samples of gas-laden amorphous ice which does not contain dust. The mechanical ~tensile strength inferred for Tempel-1: up to 12 kPa is close to our experimental findings of 2–4 kPa. This means that Tempel-1 is as fluffy as our very fluffy, talcum like, ice sample. The thermal inertia: 30<I<100 W?K?1?m?2?s1/2 is close to our value of 80. The density of 350±250 kg?m?3, is close to our value of 250–300 kg?m?3, taking into account an ice/silicate ratio of 1 in the comet, while we study pure ice. Surface morphological features, such as non-circular depressions and chaotic terrain, were observed in our experiments. The only small increase in the gas/water vapor ratio pre- and post-impact, suggest that in the area excavated by the impactor, the 135 K front did not penetrate deeper than a few meters. Altogether, the agreement between the findings of Deep Impact and our experimental results point to a loose agglomerate of ice grains (with a silicate-organic core), which was formed by a very gentle aggregation of the ice grains, without compaction.  相似文献   

2.
Laboratory measurements of physical properties of planetary ices generate information for dynamical models of tectonically active icy bodies in the outer solar system. We review the methods for measuring both flow properties and thermal properties of icy planetary materials in the laboratory, and describe physical theories that are essential for intelligent extrapolation of data from laboratory to planetary conditions. This review is structured with a separate and independent section for each of the two sets of physical properties, rheological and thermal. The rheological behaviors of planetary ices are as diverse as the icy moons themselves. High-pressure water ice phases show respective viscosities that vary over four orders of magnitude. Ices of CO2, NH3, as well as clathrate hydrates of CH4 and other gases vary in viscosity by nearly ten orders of magnitude. Heat capacity and thermal conductivity of detected/inferred compositions in outer solar system bodies have been revised. Some low-temperature phases of minerals and condensates have a deviant thermal behavior related to paramount water ice. Hydrated salts have low values of thermal conductivity and an inverse dependence of conductivity on temperature, similar to clathrate hydrates or glassy solids. This striking behavior may suit the dynamics of icy satellites.  相似文献   

3.
4.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   

5.
Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH? reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (?0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison with asteroids, the Stardust Fe-bearing and Fe-rich crystalline silicates suggests partial aqueous alteration in comet nuclei. However, aqueous alteration transforms Fe-rich olivine to phyllosilicates before Mg-rich olivine, and Stardust has Mg-rich and Fe-rich olivine and no phyllosilicates. Hence, we look to a nebular source for the moderately Fe-rich to nearly pure-Fe crystalline silicates. Primitive matrices have Mg-Fe silicates but no phyllosilicates, supporting the idea that Mg-Fe silicates but not phyllosilicates are products of water-rich shocks. Chondrule-formation is a late stage process in our protoplanetary disk. Stardust samples show comet 81P/Wild 2 formed at least as late to incorporate a few chondrules, requiring radial transport of chondrules out to perhaps >20 AU. By similar radial transport mechanisms, collisional fragments of aqueously altered asteroids, in particular achondrites that formed earlier than chondrules, might reach the comet-forming zones. However, Stardust samples do not have phyllosilicates and chondrules are rare. Hence, the nebular refractory grains in comet 81P/Wild 2, as well as other comets, appear to be pre-accretionary with respect to asteroid parent bodies. By discussing nebular pathways for the formation of Fe-rich crystalline silicates, and also phyllosilicates and carbonates, we put forth the view that comets contain both the interstellar ingredients for and the products of nebular transmutation.  相似文献   

6.
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar.  相似文献   

7.
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.  相似文献   

8.
翼型表面粗糙度对结冰的影响分析   总被引:1,自引:0,他引:1  
飞机的结冰表面出现微小的凹凸不平,即形成所谓的粗糙度,对飞机气动性能产生一定的影响。在考虑表面粗糙度时,针对对流换热系数的计算建立了热力学模型,同时对只有单个粗糙微元的表面进行了流场计算和表面对流换热效果分析;然后利用边界层积分方法,对某一翼型光滑表面和不同程度的粗糙表面分别进行了流场计算、对流换热系数计算以及结冰冰形的模拟仿真。结果表明:结冰表面粗糙度很大程度增强了表面的对流换热效果,导致在翼型前缘位置结冰厚度更大、冰角突出更为明显并且距离驻点区域更近。  相似文献   

9.
The instruments on board the Infrared Space Observatory have for the first time allowed a complete low (PHOT, CVF) to medium resolution (SWS) spectroscopic harvest, from 2.5 to 45 μm, of interstellar dust. Amongst the detected solids present in starless molecular clouds surrounding recently born stellar and still embedded objects or products of the chemistry in some mass loss envelopes, the so-called “ice mantles” are of specific interest. They represent an interface between the very refractory carbonaceous and silicates materials that built the first grains with the rich chemistry taking place in the gas phase. Molecules condense, react on ices, are subjected to UV and cosmic ray irradiation at low temperatures, participating efficiently to the evolution toward more complex molecules, being in constant interaction in an ice layer. They also play an important role in the radiative transfer of molecular clouds and strongly affect the gas phase chemistry. ISO results shed light on many other species than H2O ice. The detection of these van der Waal's solids is mainly performed in absorption. Each ice feature observed by ISO spectrometer is an important species, with abundance in the 10−4–10−7 range with respect to H2. Such high abundances represent a substantial reservoir of matter that, once released later on, replenishes the gas phase and feeds the ladder of molecular complexity. Medium resolution spectroscopy also offers the opportunity to look at individual line profiles of the ice features, and therefore to progressively reveal the interactions taking place in the mantles. This article will give a view on selected results to avoid to overlap with the numerous reviews the reader is invited to consult (e.g. van Dishoeck, in press; Gibb et al., 2004.). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

10.
A review of the behavior of water in the Mars atmosphere and subsurface is appropriate now that data from the Mariner and Viking spacecraft have been analyzed and discussed for several years following completion of those missions. Observations and analyses pertinent to the seasonal cycle of water vapor in the atmosphere of Mars are reviewed, with attention toward transport of water and the seasonal exchange of water between the atmosphere and various non-atmospheric reservoirs. Possible seasonally-accessible sources and sinks for water include water ice on or within the seasonal and residual polar caps; surface or subsurface ice in the high-latitude regions of the planet; adsorbed or chemically-bound water within the near-surface regolith; or surface or subsurface liquid water. The stability of water within each of these reservoirs is discussed, as are the mechanisms for driving exchange of the water with the atmosphere and the timescales for exchange. Specific conclusions are reached about the distribution of water and the viability of each mechanism as a seasonal reservoir. Discussion is also included of the behaviour of water on longer timescales, driven by the variations in solar forcing due to the quasi-periodic variations of the orbital obliquity. Finally, specific suggestions are made for future observations from spacecraft which would further define or constrain the seasonal cycle of water.  相似文献   

11.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

12.
The Deep Impact observations of low thermal inertia for comet 9P/Tempel 1 are of profound importance for the observations to be made by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. While sub-surface sublimation is necessary to explain the observations, the depth at which this occurs is no more than 2–3 cm and possibly less. The low thermal conductivity when combined with local surface roughness (also observed with Deep Impact) implies that local variations in outgassing rates can be substantial. These variations are likely to be on scales smaller than the resolution limits of all experiments on the Rosetta orbiter. The observed physico-chemical inhomogeneity further suggests that the Rosetta lander will only provide a local snapshot of conditions in the nucleus layer.  相似文献   

13.
We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).  相似文献   

14.
The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces.  相似文献   

15.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   

16.
《中国航空学报》2021,34(6):110-124
In-situ ceramics particle reinforced aluminum matrix composites are favored in the aerospace industry due to excellent properties. However, the hard ceramic particles as the reinforcement phase bring challenges to machining. To study the effect of in-situ TiB2 particles on machinability and surface integrity of TiB2/2024 composite and TiB2/7075 composite, milling experiments were performed, and compared with conventional 2024 and 7075 aluminum alloys. In-situ TiB2 particles clustered at the grain boundaries and dispersed inside the matrix alloy grains hinder the dislocation movement of the matrix alloy. Therefore, the milling force and temperature of the composites are higher than those of the aluminum alloys due to the increase of the strength and the decrease of the plasticity. In the milling of composites, abrasive wear is the main wear form of carbide tools, due to the scratching of hard nano-TiB2 particles. The composites containing in-situ TiB2 particles have machining defects such as smearing, micro-scratches, micro-pits and tail on the machined surface. However, in-situ TiB2 particles impede the plastic deformation of the composites, which greatly reduces cutting edge marks on the machined surface. Therefore, under the same milling parameters, the surface roughness of TiB2/2024 composite and TiB2/7075 composite is much less than that of 2024 and 7075 aluminum alloy respectively. Under the milling conditions of this experiment, the machined subsurface has no metamorphic layer, and the microhardness of the machined surface is almost the same as that of the material. Besides, compared with 2024 and 7075 aluminum alloy, machined surfaces of TiB2/2024 composite and TiB2/7075 composite both show tensile residual stress or low magnitude of compressive residual stress.  相似文献   

17.
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations. Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions.  相似文献   

18.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   

19.
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole’s penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material’s thermal conductivity due to the Mole’s penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole’s impact on Martian regolith thermal properties.  相似文献   

20.
Benkhoff  J. 《Space Science Reviews》1999,90(1-2):141-148
Surface temperature and the available effective energy strongly influence the mass flux of H2O and minor volatiles from the nucleus. We perform computer simulations to model the gas flux from volatile, icy components in porous ice-dust surfaces, in order to better understand results from observations of comets. Our model assumes a porous body containing dust, one major ice component (H2O) and up to eight minor components of higher volatility (e.g. CO, CH4, CH3OH, HCN, C2H2, H2S), The body's porous structure is modeled as a bundle of tubes with a given tortuosity and an initially constant pore diameter. Heat is conducted by the matrix and carried by the vapors. The model includes radially inward and outward flowing vapor within the body, escape of outward flowing gas from the body, complete depletion of less volatile ices in outer layers, and recondensation of vapor in deeper, cooler layers. From the calculations we obtain temperature profiles and changes in relative chemical abundances, porosity and pore size distribution as a function of depth, and the gas flux into the interior and into the atmosphere for each of the volatiles at various positions of the body in its orbit. In this paper we relate the observed relative molecular abundances in the coma of Comet C/1995 O1 (Hale-Bopp) and of Comet 46P/Wirtanen to molecular fluxes at the surface calculated from our model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号