首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss strategies for designing: active phased array antennas with high reliability. We show how to consider fault-tolerance in the design of the antenna architecture, so that replacement of failed components can be avoided for an extended period of time. First, we address the dependence of antenna life cycle cost on component failure rates. Then we discuss the design of active phased array architecture for maximizing antenna mean-time-between-failures (MTBF). The antenna MTBF is defined in terms of a specified degradation in peak sidelobe level. We present simulated data showing the effect of random, single, and clustered element failures on the peak sidelobe level of a low sidelobe antenna aperture. We use these data as a basis for analyzing various phased array architectures in terms of their antenna MTBF  相似文献   

2.
Performance analysis of conformal conical arrays for airborne vehicles   总被引:2,自引:0,他引:2  
Conformal array apertures have great potential for providing high performance, low weight systems with little or no impact to the aerodynamic design of the air vehicle. A performance analysis of conformal conical arrays for a national airborne radar application is presented. The conical array geometry is chosen for its similarity to an aircraft or missile nosecone. Performance capabilities are analyzed for a number of antenna performance parameters including scan volume, sidelobe levels, grating lobes, beamwidth, directivity, element count, and cross-polarization  相似文献   

3.
The transient sidelobe level of a sidelobe canceler (SLC) is a function of the external noise environment, the number of adaptive auxiliary antennas, the adaptive algorithm used, auxiliary antenna gain margins, and the number of samples used to calculate the adaptive weights. An analytical result for the adaptive sidelobe level is formulated for the case when the adaptive algorithm is the open-loop, sampled matrix inversion (SMI) algorithm. The result is independent of whether concurrent or nonconcurrent data processing is used in the SMI algorithm's implementation. It is shown that the transient sidelobe level is eigenvalue dependent and increases proportionally to the gain margin of the auxiliary antenna elements with respect to the quiescent main antenna sidelobe level. Techniques that reduce this transient sidelobe level are discussed, and it is theoretically shown that injection independent noise into the auxiliary channels significantly reduces the transient sidelobe level. It is demonstrated that using this same technique reduces the SMI noise power residue settling time  相似文献   

4.
An analysis shows the performance degradation of a sidelobe cancellation system as the consequence of a basic property of partially adaptive antennas when neighboring interference directions are weighted differently in sign by the radar antenna sidelobes.  相似文献   

5.
Polarization Mismatch Errors in Radio Phase Interferometers   总被引:1,自引:0,他引:1  
An analysis is presented which deals with the effects of polarization mismatch errors on the accuracy of a phase interferometer used for position location of unknown emitters relative to known calibration emitters. Closed-form expressions for the induced phase difference between interferometer antennas are derived for several combinations of receiving and transmitting antenna polarizations. Errors contributed by mechanical misalignment between antennas, as well as effects of power loss attributable to polarization mismatch, are also considered. The analysis leads to the conclusion that circularly polarized interferometer and transmitter antennas are best suited for the position location application, if it is assumed that polarization tracking of the interferometer antennas is not available. It is shown that a reasonable amount of ellipticity can be tolerated before the phase error becomes significant.  相似文献   

6.
The sidelobe suppression and improved sidelobe suppression mode performance of terminal and enroute air traffic control radar beacon systems using the existing antenna and a typical improved antenna in the presence of perfectly dielectric flat ground are investigated theoretically. Necessary analytical expressions for various quantities characterizing the system performance have been derived. A general purpose computer program has been developed for the computation and tabulation of these quantities as functions of the elevation angle of the observation point and for different combinations of heights of the directional and omnidirectional antennas of the beacon. Although the discussions given here apply to some specific antenna configurations, the theoretical method developed has more general application in evaluating quantitatively the performance of the beacon system in a given situation.  相似文献   

7.
Narrow-beam, low-sidelobe antennas may be used to enhance communication in the presence of sidelobe interferers. Protection against main-beam interferers as well can be obtained through the use of an adaptive multibeam antenna. Such an antenna, suitable for time-multiplexed, multichannel signals is described here. The objective is to permit successful communication and signal direction-of-arrival tracking in the presence of a large number of sidelobe interferers and a small number of main-beam interferers.  相似文献   

8.
It is shown that synthetic-aperture radar (SAR) motion can be compensated by using an antenna-mounted strapdown inertial measurement unit (IMU) as the motion sensing system, but sensor and system errors affect SAR image quality. A strapdown IMU consists of three accelerator channels and three gyro channels. Strapdown IMU errors include gyro-scale and accelerometer-scale factor and bias errors, velocity error, platform tilt, and errors induced by limited inertial sensor bandwidth. The effects of these errors on the SAR image quality are presented in terms of the SAR impulse response. IMU errors that cause low-frequency phase errors (less than one cycle per array time) are categorized in terms of quadratic and cubic phase errors. IMU errors that cause high-frequency phase errors (greater than one cycle per array time) are categorized in terms of the integrated sidelobe ratio and peak sidelobe ratio. A motion compensation system conceptualization is described wherein a strapdown IMU is attached to an antenna and transfer-aligns to the aircraft's master navigator  相似文献   

9.
A study is made of a transmitting antenna spinning relative to a receiving antenna, showing that the received signal undergoes a phase shift which depends upon the relative orientation and the ellipticity conditions of the two antennas. It is shown that this phase shift is important in Doppler distance measuring equipment because it must not be confused with the phase shift caused by the changing distance between the antennas.  相似文献   

10.
We show that the use of nondedicated Global Positioning System (GPS) sensors to determine the attitude parameters of a vessel yields the same level of performance as the use of a dedicated multiantenna receiver, namely an agreement of the order of 0.1° (1σ). The test platform is a survey launch operating at cruising speeds of 10 to 15 kt. The dedicated multiantenna receiver is a four-antenna Ashtech 3DF unit, while the nondedicated sensor array consists of three NovAtel GPSCardTM receivers. The approach used to resolve the relative carrier phase integer ambiguities between the antennas is discussed and the use of antenna baseline constraints is analyzed. A least-squares procedure which utilizes all the position information from the antennas for the estimation of the attitude parameters and their accuracy is presented. The attitude determination results from the two configurations tested are intercompared  相似文献   

11.
Dolph-Chebyshev amplitude weighting is used with FFT signal processors and array antennas when a low sidelobe response is required. This particular weighting minimizes the width of the mainlobe response while forcing all of the sidelobes to a specified sidelobe level. As the specified sidelobe level is reduced, the mainlobe width increases, as does the loss in signal-to-noise ratio. This correspondence describes how the Dolph-Chebyshev weights may be easily calculated, and gives design data showing how signal-to-noise loss and mainlobe width vary with the specified sidelobe level.  相似文献   

12.
李京生  孙进平  毛士艺 《航空学报》2009,30(7):1292-1297
机载多通道阵列雷达天线在工程实践中不可避免地存在各类阵元误差,所产生的通道失配问题会对空时二维自适应处理的性能造成大的影响。对存在阵元误差时的阵列信号模型进行了分析,提出了一种基于协方差矩阵加权(CMT)的阵元误差补偿空时自适应处理(STAP)方法,在工程应用中该加权矩阵可通过地面天线定标及校飞过程确定,通过对总干扰协方差矩阵估计的加权预处理,可将实际阵元误差对STAP性能的影响控制在测量误差的影响范围,最后通过仿真验证了算法的有效性。  相似文献   

13.
A four-element phased array antenna prototype with varactor tuning has been constructed. The design employs aperture-fed quarter-wave patch elements and loaded-line phase shifters, having a phase adjustment range of about 50/spl deg/, which enables beam steering up to 13/spl deg/ from the array boresight. The system is suitable as a building block for larger arrays and shows as such a maximum gain of 7.7 dBi and an impedance bandwidth of 1 GHz. The sidelobe level is better than -13 dB. Problems encountered include parasitic resonances which disturb matching, and partially deteriorate the radiation pattern. Additionally, mechanical manufacturing tolerances of the microstrip boards were not always adequate, whereby a 6% shift in the center frequency, some impedance errors, and phasing inaccuracies were observed.  相似文献   

14.
Adaptive antennas are now used to increase the spectral efficiency in mobile telecommunication systems. A model of the received carrier-to-interference plus noise ratio (CINR) in the adaptive antenna beamformer output is derived, assuming that the weighting units are implemented in hardware, The finite resolution of weights and calibration is shown to reduce the CINR. When hardware weights are used, the phase or amplitude step size in the weights can be so large that it affects the maximum achievable CINR. It is shown how these errors makes the interfering signals “leak” through the beamformer and we show how the output CINR is dependent on power of the input signals. The derived model is extended to include the limited dynamic range of the receivers, by using a simulation model. The theoretical and simulated results are compared with measurements on an adaptive array antenna testbed receiver, designed for the GSM-1800 system. The theoretical model was used to find the performance limiting part in the testbed as the 1 dB resolution in the weight magnitude. Furthermore, the derived models are used in illustrative examples and can be used for system designers to balance the phase and magnitude resolution and the calibration requirements of future adaptive array antennas  相似文献   

15.
The far-field radiation patterns of radar antennas when installed aboard ships may differ substantially from their free-space or theoretical design radiation patterns. We obtain some estimates for the effective sidelobe levels generated by scatterers in the main beam of the antenna by 1) ships and other discrete scatterers in the far field; 2) the sea in the far field; and 3) the ship's own superstructure in the Fresnel region.  相似文献   

16.
In this paper the problem of uplink array calibration for deep-space communication is considered. A phased array of many modest-size reflectors antennas is used to drastically improve the uplink effective isotropic radiated power of a ground station. A radar calibration procedure for the array phase distribution is presented using a number of in-orbit targets. Design of optimal orbit and the number of calibration targets is investigated for providing frequent calibration opportunities needed for compensating array elements phase center movements as the array tracks a spacecraft. Array far-field focusing based on the near-filed in-orbit (low Earth orbit (LEO)) calibration targets is also presented and array gain degradation analysis based on the position error of the array elements and in-orbit targets has been carried out. It is shown that errors in the in-orbit targets positions significantly degrade the far-field array gain while the errors in array elements positions are not very important. Analysis of phase errors caused by thermal noise, system instability, and atmospheric effects show insignificant array gain degradation by these factors  相似文献   

17.
Generating chirp waveforms by means of phase coding yields a simple, cost-effective mechanization. The coding process, however, introduces phase errors whose effect must be included in the design. An approximate analysis is presented, valid for moderate to high compression ratios, which allows error effects on compressed pulse amplitude and sidelobes to be calculated in a simple manner. The anaylsis provides criteria for selecting the coding bit width (sample rate), weighting network bandwidth, and phase-coder quantization interval and transition times. Weighting functions for maximizing the signal-to-noise ratio (SNR) or for producing desired close-in sidelobe performance are derived, as is an exact expression for the transmitted spectrum. Numerical results are presented for Gaussian and the maximum-SNR weighting. The results indicate that performance will be satisfactory for many applications.  相似文献   

18.
The phasefront distortion imposed on space signals by fine-grained refractivity variations of the atmosphere is an important consideration in the design of large-aperture antennas, antenna arrays, antenna systems for measuring spacecraft position and position-rate, and radioastronomy systems. The distortion caused by ionospheric and tropospheric refractivity variations imposes fundamental limitations on the capabilities of these antennas and antenna systems, particularly on systems which must operate at low elevation angles. The purpose of this paper is to present numerical estimates of distortion imposed on signals passing through the atmosphere. Atmospheric models based on available literature are selected for this purpose.  相似文献   

19.
Degradation of antenna performance by reflector surface distortion, which lowers gain and increases sidelobe levels, is addressed. Distortion compensation concepts based on the applications of properly matched array feeds are presented. Results of conceptual developments, numerical simulations, and measurement verifications are presented in support of this approach, with particular attention to the measurement technique. It is shown that the concept is most useful for overcoming the deterioration effects of slowly varying surface distortions, which would make the method very useful for future large space and ground antennas. It is further shown that for a typical, slowly varying thermal or gravitational surface distortion, a 19-element array feed can improve the reflector performance considerably  相似文献   

20.
由于共形载体曲率的影响,共形阵列天线的阵列流形具有多极化特性.为了利用共形天线阵列流形的多极化特性,提升阵列对空间目标参数的估计性能,将天线单元的极化参数引入到导向矢量建模中.更加完整地论述了共形天线阵列流形的特点.在此基础上.建立了优化设计天线单元极化形式的目标函数,基于交替优化思想.给出了共形阵列中各天线单元最优极...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号