首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
基于高纬度芬兰Mäntsälä地区近两个太阳活动周期(1999—2017年)天然气传输管道的地磁感应电流(GIC,IGIC)观测数据,统计研究了GIC扰动的分布特征以及强GIC扰动与磁暴和地磁亚暴的相关性.研究发现:95.83%时间段的GIC强度分布在0~1A之间.定义:若某个时间段|IGIC|max> 1A,则认为发生GIC扰动;|IGIC|max>10A,则认为发生强GIC扰动事件.GIC扰动在磁地方时夜侧附近发生的概率最高,这主要与地磁亚暴发生期间电离层电流最剧烈的变化发生在磁地方时夜侧附近有关;强GIC扰动经常爆发式出现,且都发生在磁暴期间,但大多数磁暴并不伴随强GIC扰动事件发生.磁暴急始驱动的强GIC扰动事件较少,由磁层压缩引起地磁场突然增强驱动的强GIC扰动事件持续时间较短;强GIC扰动事件主要发生在磁暴主相和恢复相,由环电流变化驱动的强GIC扰动事件一般持续时间较长且强度较大.  相似文献   

2.
利用中国中低纬台站漠河(53.5°N,122.3°E)、北京(40.3°N,116.2°E)、武汉(30.5°N,114.2°E)和三亚(18.3°N,109.6°E)的电离层观测数据,对比分析了4个台站电离层参数在2015年不同季节4个地磁扰动事件期间的变化特征.结果表明,4个磁暴事件期间电离层的响应特征并不完全一致,有着明显的季节特征,春季、夏季和秋季电离层以负相扰动为主,冬季以正相扰动为主.分析发现,中性成分O/N2的降低与电离层负相扰动有关,但三亚地区的负相扰动还与扰动发电机电场相关.正相扰动的机制在不同事件中并不相同,穿透电场可能是引起春季磁暴事件期间电离层短时正暴效应的原因,而冬季长时间的正暴效应则是扰动电场和中性风共同作用的结果.  相似文献   

3.
行星际日冕物质抛射(Interplanetary Coronal Mass Ejection,ICME)与地球磁层相互作用并带来地磁暴等地磁扰动.从Richardson和Cane提供的近地球ICME列表中筛选出ICME事件集,基于ICME扰动期间的行星际等离子体与磁场数据提取出特征.通过计算各特征的费舍尔分值(Fisher Score),对这些特征进行选择,发现行星际磁场南北向分量持续时间小于-10nT且激波等扰动所带来的ICME扰动开始时,太阳风速度的增量等特征与ICME事件的地磁效应密切相关.这与现有的传统统计研究结果一致.以这些特征为基础,训练得到的径向基函数支持向量机能够以0.78±0.08的准确率判断ICME事件是否会产生中等及以上强度的地磁暴(Dst ≤-50nT).  相似文献   

4.

针对东亚地区地磁低纬度南北半球Vanimo台站(地理2.7°S,141.3°E;地磁 11.2°S,146.2°W)和海南台站(地理19.5°N,109.1°E;地磁9.1°N,179.1°W)上空的3个电离层等离子体块与等离子体泡相关联的事件,利用地面台站的电离层测高仪连续观测数据,研究等离子体泡演化期间的电离层虚高变化。结果表明:以往提出的等离子体块出现约2 h之前等离子体垂直漂移速度从向上(东向电场)转为向下(西向电场)的观点,本文的3个事例均与之不符,或者距反转时间很远(约6 h),或者由向下转为向上。在等离子体块形成时间点前的1 h内,均有突发的等离子体堆积的运动趋势,或是下降运动速度突然变慢,或是从下降转为向上运动,或是上升运动速度突然加快。这一堆积现象与等离子体块现象相关性更好,也不仅限于漂移速度从向上转变为向下。

  相似文献   

5.
强磁暴产生的地磁感应电流是诱发电力系统灾害性事故的关键因素,预防与控制地磁感应电流的必要途径是评估其在系统中的水平.掌握磁暴感应地电场的时空分布是评估所在区域电网地磁感应电流的基础,可为研究与防治电网磁暴灾害提供参考.在中国现有稀疏分布的地磁台观测数据基础上,建立了电离层等效球面元电流系统模型,并将其与复镜像法结合,建立了磁暴感应地电场和地磁场的计算模型.利用磁暴期间实测的地磁台站数据进行了计算,算例结果与平面波理论计算结果的对比证明了算法的正确性与有效性.计算结果可直接应用于电力系统的地磁感应电流计算,为分析电力系统磁暴灾害风险提供参考.  相似文献   

6.
本文探讨磁层一电离层耦合过程内中纬地磁指数的变化特点,并与极光电集流和赤道电集流(指数)变化相比较.相关分析和时序叠加分析均表明,高、中、低纬地磁指数变化可归结为磁层一电离层电动耦合的统一物理图象.有R事件的磁暴主相初期和无R事件的磁扰期内,赤道电集流和中纬地磁指数的变化各不相同.这再次证明,耦合分析中将磁层源扰动的直接穿透作用与经电离层内动力过程的效应二者加以区分和综合研究是很重要的.  相似文献   

7.
电离层总电子含量(TEC)不仅是分析电离层形态的关键参数之一,同时为导航及定位等空间应用系统消除电离层附加时延提供重要支撑。由于电离层TEC的时空变化特征,本文融合因果卷积和长短时记忆网络,以太阳活动指数F10.7、地磁活动指数Dst和电离层TEC历史数据作为特征输入,构建深度学习模型,实现提前24 h预报电离层TEC。进一步利用2005-2013年连续9年的CODE TEC数据,全面评估了模型在北京站(40°N,115°E)、武汉站(30.53°N,114.36°E)和海口站(20.02°N,110.38°E)的预报性能。结果显示不同太阳活动条件下三个站的TEC值与真实测量值的相关系数都大于0.87,均方根误差大都集中在0~1 TECU以内,且模型预报精度与纬度、太阳、地磁活动程度、季节变化相关。与仅由长短时记忆网络构成的预报模型相比,本实验模型均方根误差降低了15%,为电离层TEC预报模型的实际应用提供了参考。  相似文献   

8.
统计研究了2010年1月至2012年12月期间所有与耀斑爆发相伴生的日冕物质抛射(CME) 引发的地磁暴事件. 结果表明, 对于CME源区其主要分布在日面 45°E-45°W, 占总数的78.95%, 且西半球比东半球多, 即源区位于西半球的CME易产生地磁效应; X级耀斑与地磁效应的关联性更高, 60.0%的 X级耀斑在其爆发后的2~3天内观测到地磁暴, 而其他级别的耀斑与地磁效应的关联性低得多, 均不足10%; 通过对此期间日面爆发的所有X级耀斑研究分析后发现, 对于源区位于日面东经45°E-45°W 的X级耀斑, 若在其爆发过程中没有大尺度日面扰动, 则无伴生CME且后续产生地磁效应的可能性很低. 由此提出一种通过分析日面观测数据进行地磁暴预报的方法.  相似文献   

9.
利用分布在70°E~210°E和20°S~40°N之间的GPS台站的数据,分析了2006年4月5日夜间(中等强度磁暴期间)观测到的电离层等离子体泡的特性.结果表明,本次事件中,等离子体泡大约发生在当地日落后1~1.5 h;空间范围为经度90°E~160°E,纬度12°S~33°N.这是第一次利用地基设备观测到如此大经度范围内的等离子体泡.等离子体泡在南半球出现较早,并且存活时间较长.在其产生的过程中,在约1100 km高度上,映射到磁赤道向上的运动速度约为300m/s,并且等离子体泡在高度上有倾斜.东向电场的存在,对激发等离子体泡起到了一定的作用.  相似文献   

10.
利用佳木斯和北海道东高频相干散射雷达的观测数据,对2018年3月至2019年11月期间两部雷达观测到的F层高度的不规则体回波信号发生率的分布特征进行了对比分析。比较了在地磁平静期(Kp <3)和地磁扰动期(Kp> 3)的不规则体回波发生率变化特征,分析了回波发生率在昏侧与晨侧增强的现象和纬度变化特征。昏侧回波发生率增强现象在45°-64°MLAT范围内普遍存在,其中55°-64°MLAT的回波发生率在地磁扰动期明显增强。而晨侧回波发生率增强现象主要分布在45°-54°MLAT的地区,除了春秋分季外,地磁扰动的增强对其影响较弱。中纬日侧回波发生率受地磁活动影响较小。  相似文献   

11.
Intense geomagnetic activity is known to give rise to large geomagnetically induced currents (GICs) in power transmission grids. Recordings of geomagnetic activity provide an efficient and economical way for power transmission system operators to assess GIC risks in retrospective studies. This study investigates local geomagnetic indicators (i.e., hourly peak value, hourly range indicator and hourly standard deviation) in order to determine their usefulness for understanding the drivers of GICs in the South African power network. Results show that the GICs have a higher correlation with the geomagnetic indicators derived from the East–West component of the horizontal geomagnetic field, than the indicators derived from the North–South component of the horizontal field. This directional dependence corresponds very well with the North–South orientation of the power lines feeding the power transformers at the South African Grassridge electrical substation GIC site. It therefore follows that, the geoelectric field driving the GICs at Grassridge is North–South oriented. Further, it is shown that the hourly range indicator has a higher correlation with the GICs than the hourly standard deviation for this particular network configuration.  相似文献   

12.
Intense geomagnetically induced currents (GIC) can hamper rail traffic by disturbing signaling and train control systems. GIC threats have been a concern for technological systems at high-latitude locations due to geomagnetic disturbances driven by substorm expansion electrojet or convection electrojet intensifications. However, other geomagnetic storm processes such as storm sudden commencement (SSC) and geomagnetic pulsations can also cause GIC concerns for technological systems. We present in this paper the first evidence based on statistical data for links between geomagnetic disturbances and faulty operations (anomalies) in the functioning of railway automatics and telemetry. We analyze anomalies of automatic signaling and train control equipment which occurred in 2004 on the East-Siberian Railway (corrected geomagnetic latitude m = 46–51°N and longitude λm = 168–187°E). Our results reveal a seasonal effect in the number of anomalies per train similar to the one observed in geomagnetic activity (Kp, Ap, Dst indices). We also found an increase by a factor of 3 in the total duration of daily anomalies during intense geomagnetic storms (local geomagnetic index specific to Siberian Observatory Amax > 30), with a significant correlation between the daily sum of durations of anomalies with geomagnetic activity. Special attention was paid to failures not related to recognized technical malfunctions. We found that the probability of these failures occurring in geomagnetically disturbed periods was 5–7 times higher than the average anomaly occurrence.  相似文献   

13.
第23太阳活动周武汉站电离层TEC特征分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用武汉站(30.5°N, 114.4°E)1997年1月1日至2007年12月31日电离层TEC、太阳黑子数及地磁指数等资料, 分析了第23周武汉站TEC的周日变化、季节变化、半年变化以及与太阳活动的相关性等特征; 以2006年4月13-17日发生的磁暴为例, 讨论了武汉站TEC对磁暴的响应以及可能的机理. 结果表明,武汉站电离层TEC在太阳活动高、低年均呈典型的周日变化特征; 冬季异常和半年异常特征明显, 且受太阳活动强弱影响; TEC和太阳黑子数年均值相关系数为0.9611; TEC对磁暴的响应可能是由磁层穿透电场和中性风共同作用导致的, 具体影响机制有待深入研究.  相似文献   

14.
Ionospheric Effects of Geomagnetic Storms in Different Longitude Sectors   总被引:3,自引:0,他引:3  
This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.  相似文献   

15.
用Morlet小波变换对Oulu台站和Apatity台站(主要是Apatity台站)1998-2002年间宇宙线静日和地磁暴前的地面宇宙线强度变化特征进行分析,得到:在宇宙线静日期间普遍存在准24 h周期变化特征,并且在当地时间0200,1400左右分别出现最小值和最大值;对12个例子的分析可以看到地面宇宙线强度在地磁暴之前1-2天均出现了不同于宇宙线静日期间变化特征,或有小尺度周期出现,或周期变化完全消失,或有异常24h周期变化,这种变化特征在一定程度上可作为地磁预报的先兆特征之一.  相似文献   

16.
This paper presents the response of the ionosphere during the intense geomagnetic storms of October 12–20, 2016 and May 26–31, 2017 which occurred during the declining phase of the solar cycle 24. Total Electron Content (TEC) from GPS measured at Indore, Calcutta and Siliguri having geomagnetic dips varying from 32.23°N, 32°N and 39.49°N respectively and at the International GNSS Service (IGS) stations at Lucknow (beyond anomaly crest), Hyderabad (between geomagnetic equator and northern crest of EIA) and Bangalore (near magnetic equator) in the Indian longitude zone have been used for the storms. Prominent peaks in diurnal maximum in excess of 20–45 TECU over the quiet time values were observed during the October 2016 storm at Lucknow, Indore, Hyderabad, Bangalore and 10–20 TECU for the May 2017 storm at Siliguri, Indore, Calcutta and Hyderabad. The GUVI images onboard TIMED spacecraft that measures the thermospheric O/N2 ratio, showed high values (O/N2 ratio of about 0.7) on October 16 when positive storm effects were observed compared to the other days during the storm period. The observed features have been explained in terms of the O/N2 ratio increase in the equatorial thermosphere, CIR-induced High Speed Solar Wind (HSSW) event for the October 2016 storm. The TEC enhancement has also been explained in terms of the Auroral Electrojet (AE), neutral wind values obtained from the Horizontal Wind Model (HWM14) and equatorial electrojet strength from magnetometer data for both October 2016 and May 2017 storms. These results are one of the first to be reported from the Indian longitude sector on influence of CME- and CIR-driven geomagnetic storms on TEC during the declining phase of solar cycle 24.  相似文献   

17.
In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick’s Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75?m/s and the equatorward wind enhanced to a peak value of over 100?m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.  相似文献   

18.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号