首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
本文简要介绍OCr17Ni7A1和OCr17Ni7MoA1的深拉伸成形、机械加工、焊接和热处理等工艺研究成果。热处理控制基体和焊接试样的抗拉强度δb=115±10kgf/mm~2、延伸率δ_5≥10%、冲击值α_K≥4kgf-m/cm~2、焊缝弯曲角α_ω≥40°、滚焊试片拉力P≥800kgf/cm~2,结果使产品的液压试验、气密试验、疲劳试验和爆破试验性能均超过设计指标,成功地通过了点火试验和飞行试验。  相似文献   

2.
Let F_qbe afinite field with q=pmelements,where pis an odd prime and mis apositive integer.Here,let D_0={(x_1,x_2)∈F_q~2\{(0,0)}:Tr(x_1~(pk1+1)+x_2~(pk2+1))=c},where c∈F_q,Tr is the trace function fromFF_qtoFpand m/(m,k_1)is odd,m/(m,k_2)is even.Define ap-ary linear code C_D =c(a_1,a_2):(a_1,a_2)∈F_q~2},where c(a_1,a_2)=(Tr(a_1x_1+a_2x_2))_((x1,x2)∈D).At most three-weight distributions of two classes of linear codes are settled.  相似文献   

3.
公式ζ=Δf/2f_(dm)[见公式(11)]是工程上最常用的用图解法估计单自由度振动系统粘性阻尼比的近似公式。但是,该式在阻尼较大时过于粗糙;在阻尼过小时,测量误差则随着增大。这些误差随系统阻尼变化的关系曲线,可以由计算机作出,考察这些曲线,可以看出该式合理的应用范围。本文还在进行误差比较的基础上,建议在系统阻尼较大时,采用精确公式ζ=(2~(1/2))/2)、1-f_(dm)/f_(am)~(1/2)[见公式(25)]来测量系统阻尼。  相似文献   

4.
本文设计了求解Lyapunov矩阵方程的一种新方法。所考虑的矩阵方程是 AX—XB=C(1)其中A,B,C分别是m×m,n×n和m×n的已知矩阵。 该方法首先是将系数矩阵A,B初等相似约化为三对角矩阵,即存在可逆矩阵U,V,使U~(-1)AU=A,V~(-1)BV=B,其中A,B为三对角矩阵。然后设计了矩阵方程AY—YB=C的公式解法,分三步: 1)求f(λ)=det(λI—A)的λ各次幂的系数a_0,…,a_m; 2)计算sum from i=1 to m (A_(m-i)-CB~(m-i)),f(B); 3)求解Y。解方程AY—YB=C的方法称为THR算法。 最后经逆变换获得原矩阵方程(1)的解X。 求解矩阵方程(1)的方法称为R—THR算法。该方法的计算量约为m~3+4/3n~3+7m~2n+5nm~2+m~2。 本文给出了R—THR的串行计算的数值例子,并给出了THR算法的并行计算格式。最后通过几种数值方法的比较,表明该方法是可行的,也是有效的。  相似文献   

5.
设薄圆筒以X轴为轴,二端面各为x=-1,x=1。当静电平衡时面电荷密度σ(x)满足积分方程: integral from -1 to 1 G(x∣x′)σ(x′)dx′=常数 (1)设:U(x):=integral from 0 to x σ(x)dx (2)并令:g(U,U′)=G(x∣x′) (3)(1)可表为:ingegral g(U,U′)dU′=常数 (4)对于二维(即圆筒半径为无穷大)情形,(4)的解为 U=2/πsin~(-1)x (5)现以此作为一般情形的尝试解: (ⅰ)把这U区间(-1,1)作2n等分,在与U=-1,-1 2/n,……,1-2/n,1相应的n 1圆环上分布线电荷,其密度各为q_1,q_1 q_2,……,q_(n-1) q_n,q_n,使它们在与U=-1 1/n,……,1-1/n相应的n个圆环上产生相同的电位,对应于(4)可列出n阶线性方程组。 (ⅱ)解出q_1,q_2,…q_n。对于二维情形,可证: q_1=q_2=……q_(n-1) (6)对于一般情形并不如此,但可由此构成新的x-U曲线。 反复(ⅰ),(ⅱ),直到(6)近似满足而使x-U曲线稳定为止。 本法对粗圆筒特别适用,沿圆筒长度不取等分点,而是电荷越密集,取点越密,因而节省计算量,但仍提高了精密度.  相似文献   

6.
由Griffith脆性断裂基础理论引伸,导出了延性断裂理论,求得含有穿透裂纹或表面裂纹非加劲平板结构断裂强度新的表达式。与常用的线弹性断裂力学使用一个材料参数不同,在表达式中使用两个材料参数。本理论独特之处在于两个参数可以由单向拉伸的应力一应变曲线求出;并且,对常用的结构金属,在很宽的裂纹尺寸范围内,应力超过或者低于金属屈服应力下,理论结果和试验数据相当符合。 A—半椭园表面裂纹临界面积,(πac)/2,in~2。(吋~2) Au—在σ=σ_U下半椭园表面裂纹临界面积,in~2。(吋~2) A—埃,0.394×10~(-8)in。(吋) a—半椭园表面裂纹的深度,in。(吋) a_U—在σ=σ_U下半椭园表面裂纹的深度,in。(吋) 2C—穿透裂纹或表面裂纹的长度,in。(吋) 2C_U—在σ=σ_U下穿透裂纹或表面裂纹的长度,in。(吋) 2C_L—在σ=σ_L下穿透裂纹或表面裂纹的长度,in。(吋) E—拉伸时的杨氏模量,Psi(磅/吋~2) h—滑移带的有效高度,in。(吋) h_F—裂纹前缘变形区城的有效高度,in,(吋) h_U—裂纹前缘附近变形区域的有效高度,in。(吋) K_O—线弹性平面应力或混合型的断裂韧性,Psi in~(1/2)。(磅/吋~(3/2)) K_(1C)—线弹性平面应变断裂韧性,Psi in~(1/2)。(磅/吋~(3/2)) K_(TC)—具有中心穿透裂纹的薄板或平板的断裂靱性,Psi(in)~(1/(2 ω)(磅/吋~((3 2ω)/(2 ω)) K_(pC)—具有中心表面裂纹的薄板或平板的断裂靱性,Psi(in.)~(1/(2 ω)(磅/吋~((3 2ω)/(2 ω))) K—厚度参数 L_G—单向拉伸试验中所用的应变片长度,in。(吋) n—ε_(TP)之Ramberg—Osgood关系的指数 P—单位厚度塑性能吸收率,L bs/in。(磅/吋) T—产生单位面积新裂纹表面所消耗的能量,Lbs/in。(磅/吋) t—断裂试件厚度,in。(吋) t—单向拉伸试件厚度,in。(吋) t_o—平面应力断裂的最大厚度,in。(吋) U_E—可用于产生新裂纹表面的单位厚度弹性能,Lbs(磅) U_S—产生新裂纹表面时单位厚度所消耗的能量,Lbs(磅) U_P—塑性变形时单位厚度所消耗的能量,Lbs(磅) U_F—裂纹前缘塑性变形时单位厚度所消耗的能量,Lbs(磅) U_(F1)—在σ=σ_U下,裂纹前缘塑性变形时单位厚度所消耗的能量,Lbs(磅) U_(F2)—在σ=σ_L下,裂纹前缘塑性变形时单位厚度所消耗的能量,Lbs(磅) U_U—裂纹前缘附近塑性变形时单位厚度所消耗的能量,Lbs(磅) U_(U1)—在σ=σ_U下,裂纹前缘附近塑性变形时单位厚度所消耗的能量,Lbs(磅) U_(U2)—在σ=σ_L下,裂纹前缘附近塑性变形时单位厚度所消耗的能量,Lbs(磅) W—试件宽度,in。(吋) W_F—在应力—应变曲线下面,从颈缩开始时的应变到σ_F的应变之间的塑性能密度, Psi(磅/吋~2) W_U—在应力—应变曲线下面,从σ_L的应变到颈缩开始时的应变之同的塑性能密度, Psi(磅/吋~2) β—厚度参数ε_L—在σ=σ_L下的单向拉伸应变ε_N—修正后的颈缩单向拉伸应变ε_U—颈缩开始(σ=0.995σ_U)时的单向拉伸应变ε_F—在σ=σ_F下的修正后的单向拉伸应变ε_F—在σ=σ_F下的平均单向拉伸应变(应变片长度内平均) ε_Y—在σ=σ_Y下的单向拉伸应变ε_(PL)—在σ=σ_L下的单向塑性应变ε_(PU)—在颈缩开始时的应力下的单向塑性应变ε_(PF)—断裂应力下的单向塑性应变ε_(TL)—在σ=σ_L下的单向真正拉伸应变ε_(TY)—在σ=σ_Y下的单向真正拉伸应变ε__(TU)—颈缩开始时的单向真正拉伸应变ε_(TF)—在σ=σ_F下的单向真正拉伸应变ε_(TP)—单向真正塑性拉伸应变ε_(TPU)—在σ=σ_L下的单向真正塑性拉伸应变ε_(TPY)—在σ=σ_Y下的单向真正塑性拉伸应变ε_(TPU)—颈缩开始时的单向真正塑性拉伸应变ε_(TPF)—在σ=σ_F下的单向真正塑性拉伸应变λ—裂纹形状因子μ—厚度参数ν—波松比σ—垂直于裂纹平面的总(毛)面积应力(单向拉伸应力),Psi(磅/吋~2) σ_L—相当于0.0005单向塑性应变的弹性极限拉仲应力,Psi(磅/吋~2) σ_Y—单向屈服拉伸应力,Psi(磅/吋~2) σ_U—单向极限拉伸应力,Psi(磅/吋~2) σ_(UF)—从σ_U至σ_F的平均单向拉伸应力,Psi(磅/吋~2) σ_F—单向断裂拉伸应力,Psi(磅/吋~2) σ_T—单向真正拉伸应力,Psi(磅/吋~2) σ_(TY)—单向真正屈服拉伸应力,Psi(磅/吋~2) σ_(TU)—单向真正极限拉伸应力,Psi(磅/吋~2) σ_(TUF)—从σ_(T_U)至σ(TF)的平均真正单向拉伸应力,Psi(磅/吋~2) σ_(TL)—单向真正极限拉伸应力,Psi(磅/吋~2) σ_(TF)—单向真正断裂拉伸应力,Psi(磅/吋~2) φ—裂纹形状参数ω—断裂靱性参数  相似文献   

7.
加速寿命试验是在短时间内获得高可靠产品的失效数据的一种有效办法,因而得到普遍应用。但在低应力下,要在短时间内得到失效数据较为困难,常常进行到一段时间被迫停止,因而得到的是截断数据。本文考虑在有截断数据情形下,对数正态分布未知参数的估计。具体地讲,试验一共有k个加速应力S_1,S_2,…,S_k,有R个产品进行试验,在应力S_i下有n_i个产品。进行加速寿命试验,但是我们得到的不全是寿命失效数据y_j~i,i=1,2,…,k,j=1,2,…,n_i,n_1+n_2+…+n_i=n,而是Z_j~i=min(y_j~i,τ_j~i是预先给定的截断时间,记δ_j~i=I(y_j~i≤τ_j~i),则我们只能观察到(Z_j~i,δ_j~i),i=1,2,…,k,j=1,…,n_i。本文给出了用(Z_j~i,δ_j~i)来估计未知参数的一种方法,证明了这种参数估计的存在性,无偏性及相合性。  相似文献   

8.
采用真空电子束焊接Al-Cu-Li合金,分析了焊态下接头的微观组织以及焊后热处理对接头微观组织结构的影响。结果表 明,在焊态下,焊缝中心为典型的树枝晶,在树枝晶界分布着共晶组织,其主要组成相为α+θ′(Al2Cu),焊缝中的强化相数量较少。经过焊后热处理,接头焊缝区组织发生了显 著变化,焊缝中心组织由树枝晶转变为等轴晶,焊态下的晶界偏析现象得以消除,焊缝中析出了数量较多的球状δ′(Al3Li)相以及细针状T1(Al2CuLi)相,使接头的力学性能明显改善,接头抗拉强度由焊态下的348 MPa提高到热处理后的423 MPa,接头拉伸断口呈韧性断裂特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号