首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the electromagnetic processes in the ULF range which are important for the coupling between the atmosphere, ionosphere, and magnetosphere (AIM). The main attention is given to the Pc1–2 frequency ranges (f≈0.1–10 Hz) where some natural resonances in the AIM system are located. In particular, we consider the resonant structures in the spectra of the magnetic background noise related to the Alfvén resonances in the ionosphere as a possible diagnostic tool for studies of the ionospheric parameters. We also discuss the self-excitation of Alfvén waves in the ionosphere due to the AIM coupling and the role of such waves in the acceleration of electrons in the upper ionosphere and magnetosphere. Precipitation of magnetospheric ions due to their interaction with the ion-cyclotron waves is analyzed in relation to the ionospheric current systems, formation of partial ring current, and the influence of the ionosphere-magnetosphere feedback on the generation of such waves.  相似文献   

2.
3.
The study of ULF waves in space has been in progress for about 12 years. However, because of numerous observational difficulties the properties of the waves in this frequency band (10-3 to 1 Hz) are poorly known. These difficulties include the nature of satellite orbits, telemetry limitations on magnetometer frequency response and compromises between dynamic range and resolution. Despite the paucity of information, there is increasing recognition of the importance of these measurements in magnetospheric processes. A number of recent theoretical papers point out the roles such waves play in the dynamic behavior of radiation belt particles.At the present time the existing satellite observations of ULF waves suggest that the level of geomagnetic activity controls the types of waves which occur within the magnetosphere. Consequently, we consider separately quiet times, times of magnetospheric substorms and times of magnetic storms. Within each of these categories there are distinctly different wave modes distinguished by their polarization: either transverse or parallel to the ambient field. In addition, these wave phenomena occur in distinct frequency bands. In terms of the standard nomenclature of ground micropulsation studies ULF wave types observed in the magnetosphere include quiet time transverse — Pc 1, Pc 3, Pc 4, Pc 5 quiet time compressional — Pc 1 and Pi 1; substorm compressional Pi 1 and Pi 2; storm transverse — Pc 1; storm compressional Pc 4, 5. The satellite observations are not yet sufficient to determine whether the various bands identified in the ground data are equally appropriate in space.Publication No. 982. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif. 90024.  相似文献   

4.
This review covers various aspects of the impulsive coupling in the ULF frequency range between atmospheric discharge processes and upper ionosphere. Characteristic feature of the upper ionosphere is the occurrence of the ionospheric Alfven resonator (IAR) and MHD waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to few Hz. Induction magnetometer observations at mid-latitude stations are considered as an example of a transient ULF response to the regional and global lightning activity. For many events, besides the main impulse produced by a lightning discharge, a secondary impulse delayed about 1 sec was observed. These secondary echo-impulses are probably caused by the partial reflection of wave energy of the initial lightning pulse from the upper IAR boundary in the topside ionosphere. The multi-band spectral resonant structure (SRS) can be formed owing to the occurrence of paired pulses in analyzed time series. The statistical superposed epoch method indeed has revealed a dominance of two-pulse structure in the magnetic field background during the periods of the SRS occurrence. The numerical modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. In the lightning proximity (about few hundred km) the amplitudes of radial component is 1–2 orders less than those of the azimuthal component, and only the lowest IAR harmonics are revealed in the radial magnetic component. At distances ~103?km the spectral power densities of both components are comparable, and the SRS is more pronounced. The problems and further prospects of the study of the impulsive magnetosphere–ionosphere–atmosphere coupling via transient processes during thunderstorms are discussed.  相似文献   

5.
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   

6.
The Conference was called to bring together investigators of magnetospheric plasma waves having frequencies from VLF whistlers and emissions down through ELF and ULF to Pc5 long period pulsations. The emphasis was on the physics and techniques underlying the entire frequency range. Topics included wave electron interactions and electron precipitation, ray tracing and other methods to track down sources of VLF and ULF waves, VLF-ULF relationships, heavy ion effects in ULF propagation, and long period ULF waves.  相似文献   

7.
Since long ULF waves are known to play a dominant role in the dynamics of energetic protons. Recent observations have shown that they also contribute to the heating and/or acceleration of both heavy ions and electrons. This review will deal with all the aspects of wave particle interactions that involve electromagnetic ULF waves in the equatorial region of the magnetosphere. We will consider successively Pc-3-4-5 pulsations, magnetosonic waves and ion cyclotron waves. In the latter case, for which both the experimental data and the theoretical interpretation are more advanced, we will discuss the linear, quasi-linear and nonlinear aspects of the interaction. Results of recent numerical simulations of this type of interaction will also be reported. A final section will be devoted to ULF waves observed in the vicinity of the Io torus.  相似文献   

8.
According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k \|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic.  相似文献   

9.
We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a ??=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.  相似文献   

10.
The behaviour of continuous pulsations pc 2–5 observed on the ground has been known for some time. They seldom occur at night, their amplitudes generally increase towards the auroral zones and the sense of rotation of their polarisation often agrees with surface waves on the magnetopause. Recently ULF sonagrams for middle latitudes have shown systematic behaviour and dominant periods. Theoretical study of normal modes for symmetrical models is also well established. If the wave depends on longitude like e im , modes with large m are quasi-transverse and these are likely to be excited and will be emphasised.The Kelvin-Helmholtz instability has recently been studied in a general formulation. For given fields and plasma properties on both sides of the boundary, a plot of critical wind speed against the direction of the wave fronts shows a cusp, meaning that for most directions of the wind the onset of instability will correspond to the cusp and the nature of the waves can be predicted from this. Almost circularly polarised waves are predicted confirming an earlier heuristic suggestion.Magnetic data from Explorer 33 shows rather irregular disturbance near the magnetopause, but an integration designed to show the sense of rotation of the polarisation shows clear agreement. The disturbance outside the magnetopause also shows the predicted polarisation, indicating that a substantial part of it must be due to surface waves, whereas previously it was believed to be the turbulence of the magnetosheath.Bounce resonance has also been invoked to excite ULF waves, particularly those observed at the geostationary orbit, which may also correspond to pg at the ground. They are remarkably regular and quite strictly transverse, suggesting large m. Energetic particles may then see a higher frequency as a result of their drift. A simple picture of the exchange of energy is obtained using a frame rotating with the wave and it is seen that the wave can be driven by a spatial gradient in the energetic particles. The most important mechanism is due to the tilting of the field lines and the growth rate can be large. The reflection by the ionosphere requires further study.  相似文献   

11.
Onsager  T.G.  Lockwood  M. 《Space Science Reviews》1997,80(1-2):77-107
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.  相似文献   

12.
Ion cyclotron waves (hereafter ICW's) generated in the magnetosphere by the ion cyclotron instability of 10–100 keV protons are now known to be the origin of short-period (0.1–5 Hz) electromagnetic field oscillations observed by synchronous spacecraft and on the earth's surface. Observations of the various wave characteristics, including spectral and polarization properties that lead to the identification of generation and propagation mechanisms and regions in the magnetosphere are described with reference to ATS-6, GEOS and ground-based wave data and interpreted using cold plasma propagation theory. The presence of heavy ions (O+, He+) dramatically modifies ICW magnetospheric propagation characteristics giving rise to spectral slots and polarization reversals. These properties may be used in plasma diagnostics. Finally satellite-ground correlations and techniques for determining the magnetospheric source position of ICW's not seen at synchronous orbit but observed on the ground as structured Pc1 pulsations are considered.  相似文献   

13.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
??EIT waves?? are large-scale coronal bright fronts (CBFs) that were first observed in 195 Å images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Commonly called ??EIT waves??, CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100?C700 km?s?1 with front widths of 50?C100 Mm. As their speed is greater than the quiet coronal sound speed (c s ??200 km?s?1) and comparable to the local Alfvén speed (v A ??1000 km?s?1), they were initially interpreted as fast-mode magnetoacoustic waves ( $v_{f}=(c_{s}^{2} + v_{A}^{2})^{1/2}$ ). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.  相似文献   

15.
Sounding rockets and satellites have discovered a large variety of plasma waves within the Earth's magnetosphere—geospace. These waves are found over a frequency range of millihertz to megahertz. The frequency ranges are generally associated with characteristic frequencies such as the plasma frequency and gyrofrequency. Most waves are generated by hot or streaming magnetospheric plasma; some waves are due to lightning discharges, to intentional man-made transmitters or to incidental radiation from power transmission systems. Propagation of waves from the observation region back to a probable source region can be modelled using ray tracing techniques in a model magnetosphere where the electron number density, ion composition and magnetic field vector is specified. Information in addition to the common amplitude-frequency-time spectrograms can be obtained from the received waves using multiple antennas and receivers. Cross-correlation of the wave electric and magnetic components can provide information on the wave polarization and direction of propagation and on the wave distribution function.  相似文献   

16.
Cheng  C.Z. 《Space Science Reviews》2004,113(1-2):207-270
A new scenario of substorm growth phase, onset and dipolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient continue to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed. The equatorial plasma beta (β eq ) can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m2 as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-l and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low frequency instability with a wave period of 50–75 seconds is excited about 2–3 min prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the onset of current disruption higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2–3 in the high-β eq region and the field line geometry recovers from tail-like to dipole-like – dipolarization.  相似文献   

17.
We present theory of long period (pc 3 to pc 5) magnetic pulsations. It consists of two parts; one (we call type A) deals with a resonant Alfvén wave excitation at a local field line by a monochromatic wave generated at the magnetopause, and the other (we call type B) deals with an excitation of a surface eigenmode by an externally applied impulse at a location with a rapid spatial change of plasma parameter(s).For the type A pulsations, the theory gives the frequency, the sense and the ellipticity of the polarization and the orientation angle of the major axis as a function of the magnetospheric parameters. In particular, it is shown that the orientation angle of the major axis of the polarization ellipse is a sensitive function of the direction of the wave propagation in longitude and the change of the number density and the magnetic flux density in the radial direction, hence it can be used as an important diagnostic parameter.In the type B pulsations, the theory gives the excitation frequency and the damping rate of the pulsations using the derived surface eigenmode. Example of an application to the observed magnetic field oscillations at the plasmapause is presented in which the observed frequency and the damping rate are used to estimate the plasmapause density and its radial density gradient.  相似文献   

18.
Atmospheric photoelectrons have been observed well above the ionosphere of Mars by the ASPERA-3 ELS instrument on Mars Express. To systematically interpret these observations, field lines from two global MHD simulations were analyzed for connectivity to the dayside ionosphere (allowing photoelectron escape). It is found that there is a hollow cylinder behind the planet from 1–2 R M away from the Mars-Sun line that has a high probability of containing magnetic field lines with connectivity to the dayside ionosphere. These results are in complete agreement with the ELS statistics. It is concluded that the high-altitude photoelectrons are the result of direct magnetic connectivity to the dayside at the moment of the measurement, and no extra trapping or bouncing mechanisms are needed to explain the data.  相似文献   

19.
The observations of hot ions in the high altitude ionosphere, at IR e along the auroral zone magnetic field lines, near the equatorial plane in the inner magnetosphere, in the distant tail, and in the magnetospheric boundary regions are reviewed with particular regard to the relations of the ions to the electrons. The physical knowledge obtained from the observations is summarized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号