首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Generalized and optimal topologies of zero-voltage-switching and zero-current-switching resonant DC/DC power converters are presented. It is shown that many equivalent topologies of the converters can be derived from each of the generalized topologies. The generalized topologies of the converters show clearly which of the parasitic capacitances and inductances can be absorbed into the LC resonant circuit. Utilizing this fact, optimal topologies that are the most suitable for high-frequency operation are derived. In the optimal topologies, the greatest possible number of parasitic reactances is included harmlessly in the resonant circuit. Optimum layout and component selection guidelines for the converters are given. High-order resonant converters are also developed  相似文献   

2.
Because of their reduced switching losses, allowing a higher operating frequency, dc-to-dc resonant converters have been used extensively in the design of smaller size and lighter weight power supplies. The steady state and dynamic behavior of both the conventional series and parallel resonant converters have been thoroughly analyzed and small-signal models around given nominal operating points have been obtained. These models have been used in the past to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and this could lead to instability in the face of component or load changes. Moreover, prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial and error approach In this paper we use μ-synthesis to design a robust controller for a series resonant converter (SRC). In addition to robust stability the design objectives include rejection of disturbances at the converter input while keeping the control input and the settling time within values compatible with a practical implementation  相似文献   

3.
A new resonant mode power amplifier design is described which has a number of advantages over the power amplifiers available today. In particular, it has low or no EMI because of the nature of its operation. The new amplifier design is based upon a resonant mode dc-dc converter used in a push-pull configuration. All the advantages of the resonant mode power converters, such as high efficiency, small size and weight, excellent dynamic performance, low or no EMI (compared to PWM switch mode power converter), etc., are present in this new design.  相似文献   

4.
The state-plane analysis technique is established for the zero-voltage-switching resonant DC/DC power converter family of topologies, namely the buck, boost, buck-boost, Cuk, sepic, and dual-sepic converters. The state plane provides a compression of information, which allows the designer to examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, modes of resonant converter operation are examined. Expressions are derived for the switching frequencies at the boundaries between these modes and at the boundary of energy conversion  相似文献   

5.
The analysis of resonant converters including the capacitance of the switches is presented. New dc characteristics are obtained for the series, parallel, and series-parallel resonant converters (SPRC). The operating regions where the converters operate with zero-voltage switching (ZVS) are determined as a function of the switch capacitance. The more pronounced effect can be seen in the series resonant converter (SRC), while the parallel resonant converter (PRC) is the most insensitive. The results of the analysis have been verified on an experimental prototype  相似文献   

6.
A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.  相似文献   

7.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

8.
A high-frequency (HF) link parallel resonant DC/DC converter operating in the lagging power factor mode with the resonating capacitor on the secondary side of the HF transformer is analyzed using a state-space approach. Closed-form solutions (except for the duration of diode conduction) are obtained for steady-state conditions, and design curves are obtained. A method of obtaining optimum operating point under certain constraints is developed and is used as the basis of a simple design procedure. A theoretical study comparing the performance of three MOSFET-based 1-kW converters with different transformer turn ratios under load changes from rated-load to 10% load is carried out. Experimental results obtained with these converters with different transformer turn ratios are also presented  相似文献   

9.
A new class of AC/DC converter topologies (Type-1 converters) is described, suitable for use in an advanced single-phase sine-wave voltage, high-frequency power distribution system, of the type that was proposed for a 20 kHz Space Station primary electrical power distribution system. The converter comprises a transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input AC voltage source is converted into a sinusoidal current source using the resonant network. The output of this current source is rectified by the diode rectifier and is controlled by the current controller. The controlled rectified current is then filtered by the output filter to obtain a constant voltage across the load. Three distinct converter topologies, Type-1A, Type-1B, and Type 1-C, are described, and their performance characteristics are presented. All three types have a close-to-unity rated power factor (greater than 0.98), low total harmonic distortion in input current (less than 5%), and high conversion efficiency (greater than 96%)  相似文献   

10.
Analysis based on the state-plane diagram is given for series resonant converters operating in the frequency range 0.5 ? fs/fo ? 1.0. When the voltages and currents in the converter are normalized, design parameters take on special geometric meanings in the normalized state diagram. Examples of converter design using graphical methods are given for the cases of ? and ? control. Control characteristics of the converter operating in the continuous conduction mode are derived. The concept of the energy reflection coefficient is introduced as a measure of power transfer efficiency in the converter design.  相似文献   

11.
A buck converter operating at constant switching frequency, whose active switches and recovery diode commutate at zero-voltage-switching (ZVS), with zero capacitive turn-on losses, is proposed. By using the parasitic capacitances of the switches as resonant capacitors, multiresonance is created. The resonant stage takes place only after the resonant inductor has been discharged, thus avoiding a resonant current peak; the devices are subjected to the same stresses as their counterparts in conventional hard-switching converters. A high efficiency is obtained.  相似文献   

12.
Because of their tolerance of transformer nonidealities, resonant converters are considered to be well-suited to high-voltage applications. The series and parallel resonant topologies, as well as a newly discovered hybrid resonant topology are compared for high-voltage applications. Design criteria which incorporate transformer nonidealities are developed and used in the construction of high voltage prototypes for each topology. It is found that the parallel topology leads to the lowest peak switch current and the most ideal behavior  相似文献   

13.
New VF-power system architecture and evaluation for future aircraft   总被引:1,自引:0,他引:1  
Conventional aircraft power system is a constant-frequency (CF) supply based on mechanical-regulated constant-speed mechanism that has relatively low efficiency. Replacing the CF system with variable-frequency (VF) power improves overall efficiency, and reduce the system's weight and volume. However, this creates a new tier of requirements and design challenges. Novel VF-power architecture is developed with minimization of the power losses throughout the stages of power conversions. Optimal partitioning and grouping of onboard AC loads has been discussed with specific system data. New VF-input multi-functional power converters are also briefly discussed.  相似文献   

14.
A new procedure to start a jet engine (JE) and to generate power by means of a single induction machine (IM) directly coupled to the turbine is presented. The JE is brought to an initial speed by the motoring operation of the IM. Later, the IM is taken into generating mode and the turbine is applied to its excitation. The turbine catches up and starts to drive the induction generator (IG). The generated power is converted to a three-phase, 400 Hz voltage-regulated bus via a double stage power conversion utilizing a 20 kHz parallel resonant high frequency AC link and pulse density modulated converter technology. Independent of the engine speed, a constant amplitude and constant frequency three-phase voltage-regulated AC bus is formed and maintained by the proper control of the power converters. The feasibility of operation of such a system has been demonstrated in software where the JE turbine is modeled and replaced by a DC machine. An introduction, background, operation principles of the overall system, and the related software simulations are presented and discussed.  相似文献   

15.
Summarizes important developments relating to power for deep space missions. The important alternatives to thermocouples for converting radioisotope heat into electric power are Stirling engines, alkali-metal thermal-to-electric converters (AMTEC), thermionic converters, and thermo-photovoltaic converters. The operating principles and limitations of these converters are described.  相似文献   

16.
A constant-frequency diode-clamped series resonant converter (CFCSRC) is proposed as a solution to problems associated with frequency-controlled resonant converters. This converter has two resonant frequencies, and control is achieved by varying the relative time spent at each switching frequency. Two zero-current-switching (ZCS) modes are examined and plotted in the output plane. An equation is given for the boundary between the two ZCS modes, as well as an expression for the boundary between ZCS and non-ZCS operation; both are plotted in the output plane. The output equation for the main mode is shown to be hyperbolic. Converter peak voltages limited to the input voltages, and peak currents are less than those of the frequency-controlled clamped series resonant converter over a large operating range. Data from a prototype converter are compared with theoretical data and are shown to be in good agreement with the theoretical model  相似文献   

17.
A unified approach to developing single-stage power converters which can fulfil multiple functions is presented. Four synchronous switches corresponding to the four common node types of two active switches are introduced. The approach is then to replace the active switches in multistage converters (in cascade or cascode connection) with one or several of the synchronous switches and their degenerated versions to form a single-stage converter. Illustrations of using these switches to develop single-stage converters are presented. These are started with the development of the well-known single-stage switch-mode converters (SMCs), buck-boost, Cuk, sepic, and Zeta (also named dual sepic), from the basic converters, buck and boost. Then, synthesis and applications of other single-stage converters are addressed. Due to increased component stresses, the developed single-stage converters are primarily suitable for applications with moderate power levels  相似文献   

18.
《中国航空学报》2021,34(10):115-127
To diagnose the Open-Circuit (OC) fault in the novel fault-tolerant electric drive system, based on d-q-axis current signal, a strong robustness diagnosis strategy is proposed and investigated. Fewer independent power supplies and converters are required in the novel fault-tolerant electric drive system based on Dual-Winding Permanent Magnet Motor (DWPMM), and the system’s reliability, usage ratio and power density have been improved compared to the conventional fault-tolerant motor drive system. However, the novel fault-tolerant electric drive system has the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition. And it lacks the research on the diagnostic method when the system encounters intermittent OC fault in power switches. By theory derivation, simulation and experimental verification, it can be concluded that the proposed strong robustness OC fault diagnosis strategy based on d-q-axis current signal can overcome the OC fault diagnostic false alarms issue when load changes suddenly or under light-load condition. And it can detect and locate the OC fault of single-phase winding in real time, and diagnose the intermittent OC fault of power switches.  相似文献   

19.
In this paper, the small signal analysis of the LCC-type parallel resonant converter (LCC-PRC) operating in the continuous conduction mode is given. This analysis is based on both the state-plane diagram, which has been successfully used to obtain the steady state response for resonant converters, and the Taylor series expansion. Applying perturbation directly to the steady state trajectory, a discrete small signal model for the converter can be derived in terns of the input voltage, switching frequency, and the converter state variables. Based on this analysis, closed-loop form solutions for the input-to-output and control-to-output transfer functions are derived. It is shown that the theoretical and computer simulation results are in full agreement  相似文献   

20.
针对电流变柔性微致动器所用的驱动电源,在理论上探讨了采用交流或直流供电方式的特点,并以此为基础设计了驱动电源的电路结构,然后针对驱动电源的关键技术做了分析,提出了稳定性补偿方案并进行了试验研究。试验结果表明电流变微致动器的分布电容对驱动电源的动态响应有很大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号