共查询到16条相似文献,搜索用时 62 毫秒
1.
为了实现捷联惯导系统(SINS,Strapdown Inertial Navigation System)快速精确对准,研究了SINS进行最优多位置对准的条件及方法.利用李雅普诺夫变换得到的SINS等价误差模型,在对惯性测量单元(IMU,Inertial Measurement Unit)绕正交轴旋转时SINS可观测性进行定量分析的基础上,通过研究惯性器件误差与IMU角位置之间的关系,定量分析了IMU的转动方式,明确了使SINS误差状态达到最优估计时IMU的最佳旋转角位置.最后,通过仿真验证了理论分析的正确性. 相似文献
2.
传统的多位置解析对准方法一般要求将捷联惯导系统(SINS)安装在一个伺服平台上并绕天向轴旋转90°或180°,这对工程带来不便,且伺服平台的精度会影响多位置解析对准的精度.针对这一问题,提出最简多位置解析对准方法,指出任意两位置是实现SINS多位置解析对准所需的最小条件,即通常理论上任意两位置可解算出惯性测量单元(IMU)的常值偏置,给出了计算方法,并通过仿真实例加以说明和验证,可以作为一种简易初始对准或现场标定方法.另外通过解析方法指出在特殊姿态下,某单一轴向的加速度计常值偏置或陀螺常值漂移可以直接被较好地估计出来,结论可用于进一步改进多位置对准方法. 相似文献
3.
初始对准是旋转式捷联惯导系统(SINS)的关键技术之一。传统旋转式捷联惯导精对准方法多采用10维模型,该模型的精对准精度不能满足导航精度要求。针对此问题,提出了一种基于状态量扩维的旋转式捷联惯导系统精对准方法。首先,将陀螺和加速度计标度因数误差、安装误差扩展为状态变量,建立了28维的精对准模型;然后,对旋转过程中各状态量的可观测度进行分析,根据分析结果将模型优化为13维;最后,采用卡尔曼滤波实现了旋转式捷联惯导系统的精对准。仿真结果表明,与传统初始对准方法相比,该方法能有效提高姿态对准精度,并估计出更多陀螺误差项。 相似文献
4.
建立了SINS(捷联惯导系统)动基座对准的误差模型,首次应用PWCS(分段定常系统)可观测性分析理论对SINS动基座对准过程中的可观测性进行了全面研究.将载体的运动分解为平动和姿态变化两大类情形,深入研究和详细分析了载体的各种运动对系统可观测性的影响,指出在SINS动基座对准过程,无论载体的线运动还是角运动在一定条件下都能提高SINS的可观测性.定性地得出了不同运动对系统可观测性的影响结果,这为研究SINS的快速精确对准方法奠定了理论基础. 相似文献
总被引:1,自引:0,他引:1
针对机载武器惯性导航系统动基座传递对准问题,以系统原始的非线性模型为分析对象,根据可观测性的基本定义,将系统可观测性问题转化为判断系统状态量是否存在唯一解。通过分析系统各状态量的解同载体运动方式之间的关系,得出了系统各状态量可观测的充分条件,并设计了相应的机动方案。结果表明,载体在不同加速度下的平移运动可增强惯性器件误差、安装误差角和姿态的可观测性,而载体的旋转运动则有助于提高杆臂的可观测性。与传统方法不同,该方法分析过程简洁明了,且物理意义明确,为合理规划载体的机动方案提供了理论指导,同时,也为其他非线性系统的分析与设计提供了新的思路。最后,采用扩展Kalman滤波(EKF)对系统进行了仿真,仿真结果验证了理论分析结果的正确性和有效性。 相似文献
提出了一种机载武器捷联惯导系统大失准角情况下快速传递对准QCKF(Quaternion Cubature Kalman Filter)算法.采用乘性四元数表示失准角,建立了基于四元数的速度加姿态匹配传递对准模型.将噪声扩维为状态思想应用到CKF(Cubature Kalman Filter)中以解决非线性过程噪声和量测噪声问题.考虑到表示旋转的四元数具有规范化以及符号相反的四元数表示相同旋转的性质,对CKF算法中关于四元数部分加权求均值转变为约束条件下基于投影长度的加权求均值,对CKF算法中关于四元数部分求方差进行符号预处理.仿真结果表明算法能在大失准角情况下提高对准精度. 相似文献
7.
现在,国内外越来越重视对无陀螺捷联惯导系统的研究,然而在解算惯性组合基本分量时把加速度计理想化了,忽视了加速度计横向输出对解算结果的影响,从而影响了无陀螺捷联惯导系统的制导准确度。将加速度计的横向输出带人了解算过程,与传统解算过程所得的结果比较,系统基本分量更加精确,对提高无陀螺捷联惯导系统的制导准确度有重大意义。 相似文献
8.
从控制论的观点探讨了实现惯性导航系统(INS)快速对准及标定的途径及方法.通过引入李雅普诺夫变换,论证了SINS(Strapdown Inertial Navigation System)模型与GINS(Gimbaled Inertial Navigation System)模型的等价关系;通过基于物理本质的相似变换,提出了用伪状态来代替真实状态,从而使INS的可观测状态和不可观测状态之间动态解耦,得到了INS的最佳完全可观测子系统模型;通过对INS可观测子系统模型的简化,提出了一种快速估计方位失准角和标定陀螺仪漂移误差的方法,该算法表明方位失准角和陀螺仪的漂移误差完全可从水平失准角速率中快速估计出来,而不必使用陀螺的输出信号. 相似文献
9.
分析了惯导系统(INS)初始对准的动态误差向量方程及其动态误差向量的可观性问题,并研究了按动态误差向量的可观度划分观测子空间.在惯导系统初始对准问题中通过使用变量可观度的概念构造次优卡尔曼估计算法.并用C语言编程实现了初始对准的最优及次优卡尔曼滤波算法.从仿真结果可见次优卡尔曼滤波算法可用于INS初始对准的实用计算中. 相似文献
10.
针对车载自主导航需求,基于卡尔曼滤波器,实现捷联惯导与里程计量测信息的组合导航.推导了里程计误差模型,结合捷联惯组误差模型与捷联系统误差模型,建立了捷联惯导/里程计自主组合导航系统误差状态模型.建立了捷联惯导/里程计组合导航量测模型,阐述了估计误差修正方法.采用仿真计算对此方法进行了验证,仿真结果表明:组合导航过程中,初始姿态误差能得到有效估计,姿态误差和位置误差均能控制在一定精度范围内,应用此组合导航方法相对于传统的航位推算方法能得到更高的导航精度,能有效实现自主高精度定位定向. 相似文献
11.
基座摇摆运动及产生的杆臂效应误差是影响舰载武器对准精度和快速性的关键因素.基于摇摆基座上舰载武器捷联惯导系统SINS(Strapdown Inertial Naviagtion System)初始对准的特点,分析了杆臂效应的产生机理及杆臂效应干扰加速度的补偿方法.在研究利用参数辨识法代替卡尔曼滤波进行摇摆基座SINS初始对准方法基础上,考虑工程应用实际情况,进而提出了利用一种参数辨识法进行摇摆基座初始对准的改进方案;最后,通过仿真验证表明采用改进参数辨识方法进行舰载武器SINS对准,不仅能提高对准的精度,而且可提高对准的快速性.研究结果可为舰载武器初始对准方案的选择与设计提供理论参考. 相似文献
12.
动基座对准时,系统模型的精确性及状态的可观测性和可观测度是决定动态系统卡尔曼滤波效果的重要因素.建立了考虑主-子惯导匹配信息时间延迟问题的摇摆基座捷联惯导系统SINS(Strapdown Inertial Naviagtion System)精确传递对准模型,将PWCS(Piece-Wise Constant System)可观测性与奇异值分解可观测度分析方法相结合,对基座在不同摇摆方式下舰载武器SINS状态的可观测度进行了定量分析,得到了基座在三轴摇摆运动时SINS的状态变量具有最佳的可估计性能,从而使SINS可获得最优的对准速度和精度.该方法为舰载武器初始对准时舰船最佳机动方案及传递对准匹配模式的选择提供了依据,仿真结果表明了该方法的正确性和有效性. 相似文献
13.
针对不同型号的捷联惯性导航系统(SINS, Strapdown Inertial Navigation System)测量量程及动态性能差异大,而常规标定方法难以提供多动态性信号激励的问题,提出一种利用离心机和转台对SINS进行整体标定的新方法.通过将转台安装在离心机上,调整转台姿态以及离心机旋转速度和旋转半径,可对SINS提供多范围、多运动形式的信号激励,实现对不同参数特性SINS的标定.建立了完整的离心机转台控制模型并对其进行了仿真验证,利用转台依次调整SINS到6个不同位置,控制离心机对每个位置进行正反两次共计12次旋转,即可标定出整个系统的24个误差参数.理论分析表明:该标定方法简单易操作,数据利用率高,激励信号设置灵活,具有一定的工程应用价值. 相似文献
14.
旋转矢量法应用在捷联惯导系统圆锥误差补偿中,通过增加子样数能有效提高补偿精度,但子样数的增加会增加导航计算机的计算量.由于导航计算机的硬件性能限制,不可能为了获得高精度补偿性能而大幅增加子样数.因此,提出一种在不增加导航计算机负担下能提高圆锥误差补偿精度的新算法,该算法利用已解算出的当前时刻之前2个周期的姿态信息对旋转矢量进行修正,通过理论推导和实例分析比较,在同子样数下,新算法能达到高出传统算法4阶的补偿精度而不多消耗导航计算机资源. 相似文献
15.
针对传统惯性导航系统机械编排在极区导航存在无法定位定向问题,提出了一种基于凝固地理系的捷联惯导极区导航新方案。该方案在极区内采用相对于原点三轴位置代替传统的经度、纬度、高度导航,导航计算不存在奇点。给出了凝固地理系捷联惯导系统的机械编排,推导了该坐标系与地理坐标系之间位置、速度和姿态信息的转换关系。仿真分析表明:凝固地理系可以解决现有机械编排在极点附近无北向基准所引起的问题,导航参数连续并且无原理性误差,可以满足飞机在极区飞行时的需要。 相似文献
捷联惯导系统(SINS)中惯性测量单元(IMU)的转位方案设计对系统的快速标定具有重要影响。目前常见的转位方案是转轴与敏感轴重合,该方式每转动一次,仅有2个敏感轴位置发生变化。为更高效地激励误差,设计了一种IMU在转台上的偏轴安装方式,并基于这种方式提出一种新的转位方案。通过合理设计转轴与敏感轴之间的角度,使其在每次转位时有3个敏感轴位置同时发生变化,开拓了IMU新的转位空间,从而在标定陀螺组件的12个主要确定性误差时,可将传统转位方式下的最少6位置标定进一步缩减为偏轴转位下的4位置标定。通过理论分析与仿真实验表明,2种方案标定精度相同,但偏轴4位置标定方法的标定时间要比静态6位置标定方法减少33%,且标定结果的稳定性要好于静态6位置标定方法。 相似文献
|