首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

2.
Clutter plays a very important role in the area of machine and human-in-the-loop target acquisition. A great deal of interest has recently been shown in assessing several different definitions of clutter. In spite of so many definitions available, no single clutter definition has been agreed on by the target acquisition modeling community as being the best. Here we develop a new clutter metric, called relative clutter, based on factor analysis which is extensively used for statistical analysis. This relative clutter combines many definitions of clutter. Different methods for calculating the relative clutter based on the magnitude of the eigenvalues obtained from the correlation matrix are suggested. The relative clutter of many images is analyzed. The relative clutter is used to calculate probability of detection on Night Vision Lab (NVL) Terrain Board Infrared images  相似文献   

3.
文章研究了背景为子空间干扰加高斯杂波的距离扩展目标方向检测问题。杂波是均值为零协方差矩阵未知但具有斜对称特性的高斯杂波,目标与干扰分别通过具备斜对称特性的目标子空间和干扰子空间描述。针对方向检测问题,利用上述斜对称性,根据广义似然比检验(Generalized Likeli-hood Ratio Test,GLRT)准则的一步与两步设计方法,设计了基于 GLRT的一步法与两步法的距离扩展目标方向检测器。通过理论推导证明了这 2种检测器相对于未知杂波协方差矩阵都具有恒虚警率。对比相同背景下已有检测器,特别是在辅助数据有限的场景下,文章提出的 2个检测器表现出了优越的检测性能。  相似文献   

4.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

5.
Radar detection in clutter   总被引:2,自引:0,他引:2  
Clutter is defined as any unwanted radar return. The presence of clutter in a range/Doppler cell complicates the detection of a target return signal in that cell. In order to quantify the effect of clutter on the probability of detection, we must first specify sets of models suitable for representing the clutter and target. The simplest and most common model for clutter is based on the gamma density. We include two additional models, the NCG and NCGG clutter models for low grazing angles. They are motivated by physical arguments, the latter of which can accommodate the well-known phenomenon of speckle. Using one of these models for clutter together with one of several models for targets, we determine, in a range/Doppler cell, expressions for probabilities of detection of a target in the presence of clutter. It is important to control the probability of false alarms. The presence of clutter in a cell necessitates an increase in the detection threshold setting in order to control false alarms, thus lowering the probability of detection. If the clutter level is unknown, then we need to take measurements of the clutter and use it to adjust the threshold. The more clutter samples we take, the better the estimate of the clutter level and the less is the resulting detection loss. Using the expressions for the probability of detection in clutter, we can quantify the detection loss for a pair of commonly used constant false-alarm rate (CFAR) techniques and investigate how the loss varies with different parameter values, especially with regard to the number of clutter samples taken to estimate the clutter level.  相似文献   

6.
Analysis of CFAR performance in Weibull clutter   总被引:2,自引:0,他引:2  
Recent interest has focused on order statistic-based (OS-based) algorithms for calculating radar detection thresholds. Previous analyses of these algorithms are extended, to determine closed-form approximations for the signal-to-clutter ratio required to achieve a particular probability of detection in clutter environments whose amplitude statistics are modeled by the Weibull distribution, and where the clutter dominates receiver noise. Performance is evaluated in both homogeneous and inhomogenous clutter. The analysis shows that the OS-based algorithm is quite robust against both interference and clutter edges. A method is suggested for improving performance at clutter inhomogeneities for short-range targets  相似文献   

7.
We propose a model for generating low-frequency synthetic aperture radar (SAR) clutter that relates model parameters to physical characteristics of the scene. The model includes both distributed scattering and large-amplitude discrete clutter responses. The model also incorporates the SAR imaging process, which introduces correlation among image pixels. The model may be used to generate synthetic clutter for a range of environmental operating conditions for use in target detection performance evaluation of the radar and automatic target detection/recognition algorithms. We derive a statistical representation of the proposed clutter model's pixel amplitudes and compare with measured data from the CARABAS-II SAR. Simulated clutter images capture the structure and amplitude responses seen in the measured data. A statistical analysis shows an order of magnitude improvement in model fit error compared with standard maximum-likelihood (ML) density fitting methods.  相似文献   

8.
A train of radar pulses from one resolution cell can be processed coherently to reject echoes from external clutter and detect targets moving radially with respect to the clutter. Optimum methods of signal processing are defined for systems in which the interpulse spacings are multiply staggered to avoid target blind speeds. Likelihood ratio tests are developed for systems in which the target Doppler frequency is known a priori and for systems employing a bank of filters to cover the target Doppler band. To implement such tests, the N pulses in the train are added with complex weights and the amplitude of the sum compared with a detection threshold. The set of weights which maximizes the average signal-to-clutter ratio is also computed for a single-filter system with unknown target Doppler frequency. When the clutter autocorrelation function is exponential, the clutter covariance matrix can be inverted analytically. This latter result is useful for comparing different interpulse-spacing codes for a particular system application.  相似文献   

9.
Radar Detection in Weibull Clutter   总被引:1,自引:0,他引:1  
Radar detection in Weibull clutter is examined from a statistical detection viewpoint. Weibull clutter parameters are determined and related to measured values of land and sea clutter. Optimum performance in Weibull clutter is determined, and practical receivers that approach this performance are identified. Receiver performance in Rayleigh, log-normal, and Weibull clutter is evaluated and compared.  相似文献   

10.
Dim target detection using high order correlation method   总被引:2,自引:0,他引:2  
This work presents a method for clutter rejection and dim target track detection from infrared (IR) satellite data using neural networks. A high-order correlation method which recursively computes the spatio-temporal cross-correlations between data of several consecutive scans is developed. The implementation of this scheme using a connectionist network is presented. Several important properties of the high-order correlation method which indicate that the resultant filtered images capture all the target information are established. The simulation results obtained with this approach show at least 93% clutter rejection. Further improvement in the clutter rejection rate is achieved by modifying the high-order correlation method to incorporate the target motion dynamics. The implementation of this modified high-order correlation using a high-order neural network architecture is demonstrated. The simulation results indicate at least 97% clutter rejection rate for this method. A comparison is also made between the methods developed here and the conventional frequency domain three-dimensional (3-D) filtering scheme, and the simulation results are provided  相似文献   

11.
Relevant to a Richian family of fluctuating targets with a composite background of sea-plus-land clutter, the performance prediction of a radar operating in near-coastal regions is elucidated by assuming noncoherent integration of the pulses. Considering the dominance of land clutter, a modified K-distributed statistic is indicated for the overall clutter envelope; and the corresponding probability of false alarm and probability of detection are deduced for fixed threshold detection (s) based on N pulses integrated in the presence of the sea-plus-land clutter and the noise. Even when the target offers a dominant scattered echo, the worst situations of the land clutter affecting the detection performance are indicated  相似文献   

12.
针对海杂波背景下目标检测问题的实际需求,在机理分析的基础上,利用实测数据对海杂波谱的时变特性进行了分析。首先,分析了波束照射区域内由海表面波浪运动引起的多普勒频移和展宽现象,以及随雷达工作参数之间的依赖关系;然后,对已有海杂波谱机理研究结果进行了分析和总结。在此基础上,利用加窗的周期图法估计得到海杂波的时间-多普勒谱,进而从相关时间的统计特性、谱宽与时域海杂波拖尾程度的依赖关系两个层面对海杂波谱的时变特性进行了分析。分析结果可为海杂波谱建模、海杂波抑制及目标检测方法设计提供理论指导。  相似文献   

13.
Optimal CFAR detection in Weibull clutter   总被引:2,自引:0,他引:2  
Optimal, in the maximum likelihood sense, constant false-alarm rate (CFAR) detection for Weibull clutter statistics, is investigated. The proposed OW (optimal Weibull) estimator is proved to be an asymptotically efficient estimator of the mean power of the Weibull clutter. Theoretical analysis of the OW-CFAR detector is provided, while detection performance analysis is carried out using the Monte Carlo simulation method. The operation of the median and morphological (MEMO)-CFAR detector in Weibull clutter statistics is also explained. It performs almost optimally in uniform clutter and, simultaneously, it is robust in multitarget situations. The performance of the proposed OW-CFAR detector in uniformal Weibull clutter is used as a yardstick in the analysis of the MEMO cell-averager (CA) and ordered statistic (OS) CFAR detectors. Nonfluctuating and fluctuating (Swerling II) targets are considered in detection analysis. The performance of the detectors is also examined at clutter edges  相似文献   

14.
针对海杂波背景下目标检测问题的实际需求,整理分析了STFT、WVD、PWVD和SPWVD 4种常见时频分析方法及其优缺点,并基于实测数据对海杂波的时频处理结果进行了对比分析。分别对纯海杂波单元和目标单元实测数据进行处理,将利用4种时频分析方法得到的结果进行对比、分析和总结。对4种方法在时频分辨率、目标能量积累程度、对海杂波抑制能力和平滑程度上各自特点进行分析,并总结得到相应的结论。  相似文献   

15.
In automatic detection in radar systems an estimate of background clutter power is used to set the detection threshold. Usually detection cells surrounding the cell under test for the presence of a target are used to estimate the clutter power. In the research reported herein, the target location is taken to be uncertain and thus returns from a target could corrupt this clutter power estimate. It is shown how the threshold should be varied to compensate for the resulting degradation in detection performance. The threshold control procedure is based on a priori information about target location that could be supplied by the radar's tracking system. In addition, a simple procedure for calculating detection and false alarm probabilities for Swerling II target models is presented.  相似文献   

16.
A novel target detection approach based on adaptive radar waveform design   总被引:2,自引:2,他引:0  
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.  相似文献   

17.
Clutter suppression is one of the most important subjects in the field of small target detection under infrared (IR) strong clutter background. While removing the clutter background, however, such methods may reverse the relative energy distribution of target and noise in the clutter suppressed image, and disturb the subsequent target segmentation and detection. This paper analyzes the causation of such problems, does research on the relationship between target energy characteristics and detection probability, and presents a novel filter of energy distribution adaptive rectification (EDARF). Based on the EDARF, an improved framework of dim small target detection is proposed to rectify the energy distribution in the clutter-suppressed images by conventional adaptive filters. The proposed EDARF's performance is estimated by experimental comparisons of three linear/nonlinear filters before and after using EDARF. Extensive experimental results show that the proposed EDARF improves efficiently the performance of detecting dim small targets against strong undulant cloud-cluttered backgrounds.  相似文献   

18.
Performance prediction for a detection system employing noncoherent integration is carried out for a chi-square family of fluctuating targets in K-distributed clutter plus noise. The detection performance for Swerling 11 targets in the K-distributed clutter plus noise is compared with that in exponentially correlated Rayleigh clutter. The results show that the performance prediction based on N pulses integrated in clutter plus noise using the K-distributed clutter model may be approximately equivalent to that using the exponentially correlated Rayleigh-distributed clutter model  相似文献   

19.
The problem of detecting radar targets against a background of coherent, correlated, non-Gaussian clutter is studied with a two-step procedure. In the first step, the structure of the amplitude and the multivariate probability density functions (pdfs) describing the statistical properties of the clutter is derived. The starting point for this derivation is the basic scattering problem, and the statistics are obtained from an extension of the central limit theorem (CLT). This extension leads to modeling the clutter amplitude statistics by a mixture of Rayleigh distributions. The end product of the first step is a multidimensional pdf in the form of a Gaussian mixture, which is then used in step 2. The aim of step 2 is to derive both the optimal and a suboptimal detection structure for detecting radar targets in this type of clutter. Some performance results for the new detection processor are also given  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号