共查询到20条相似文献,搜索用时 0 毫秒
1.
The solar wind charge state and elemental compositions have been measured with the Solar Wind Ion Composition Spectrometers
(SWICS) on Ulysses and ACE for a combined period of about 25 years. This most extensive data set includes all varieties of
solar wind flows and extends over more than one solar cycle. With SWICS the abundances of all charge states of He, C, N, O,
Ne, Mg, Si, S, Ar and Fe can be reliably determined (when averaged over sufficiently long time periods) under any solar wind
flow conditions. Here we report on results of our detailed analysis of the elemental composition and ionization states of
the most unbiased solar wind from the polar coronal holes during solar minimum in 1994–1996, which includes new values for
the abundance S, Ca and Ar and a more accurate determination of the 20Ne abundance. We find that in the solar minimum polar coronal hole solar wind the average freezing-in temperature is ∼1.1×106 K, increasing slightly with the mass of the ion. Using an extrapolation method we derive photospheric abundances from solar
wind composition measurements. We suggest that our solar-wind-derived values should be used for the photospheric ratios of
Ne/Fe=1.26±0.28 and Ar/Fe=0.030±0.007. 相似文献
2.
C. Giammanco P. Bochsler R. Karrer F. M. Ipavich J. A. Paquette P. Wurz 《Space Science Reviews》2007,130(1-4):329-333
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different
sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore,
one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but
even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon
leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances.
In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two
neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined
from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic
sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value. 相似文献
3.
R. A. Mewaldt C. M. S. Cohen G. M. Mason A. C. Cummings M. I. Desai R. A. Leske J. Raines E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):207-219
Although the average composition of solar energetic particles (SEPs) and the bulk solar wind are similar in a number of ways,
there are key differences which imply that solar wind is not the principal seed population for SEPs accelerated by coronal
mass ejection (CME) driven shocks. This paper reviews these composition differences and considers the composition of other
possible seed populations, including coronal material, impulsive flare material, and interplanetary CME material. 相似文献
4.
D. B. Reisenfeld D. S. Burnett R. H. Becker A. G. Grimberg V. S. Heber C. M. Hohenberg A. J. G. Jurewicz A. Meshik R. O. Pepin J. M. Raines D. J. Schlutter R. Wieler R. C. Wiens T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):79-86
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good
agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of
these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between
cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional
variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources
of coronal hole (CH) and interstream (IS). 相似文献
5.
R. Karrer P. Bochsler C. Giammanco F. M. Ipavich J. A. Paquette P. Wurz 《Space Science Reviews》2007,130(1-4):317-321
Using the Mass Time-of-Flight Spectrometer (MTOF)—part of the Charge, Elements, Isotope Analysis System (CELIAS)—onboard the
Solar Heliospheric Observatory (SOHO) spacecraft, we derive the nickel isotopic composition for the isotopes with mass 58,
60 and 62 in the solar wind. In addition we measure the elemental abundance ratio of nickel to iron. We use data accumulated
during ten years of SOHO operation to get sufficiently high counting statistics and compare periods of different solar wind
velocities. We compare our values with the meteoritic ratios, which are believed to be a reliable reference for the solar
system and also for the solar outer convective zone, since neither element is volatile and no isotopic fractionation is expected
in meteorites. Meteoritic isotopic abundances agree with the terrestrial values and can thus be considered to be a reliable
reference for the solar isotopic composition. The measurements show that the solar wind elemental Ni/Fe-ratio and the isotopic
composition of solar wind nickel are consistent with the meteoritic values. This supports the concept that low-FIP elements
are fed without relative fractionation into the solar wind. Our result also confirms the absence of substantial isotopic fractionation
processes for medium and heavy ions acting in the solar wind. 相似文献
6.
J. C. Raymond 《Space Science Reviews》1999,87(1-2):55-66
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments
aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface
or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements
is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have
been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question.
Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier
elements don't settle out completely.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
Ester Antonucci 《Space Science Reviews》2006,124(1-4):35-50
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on
SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed
by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close
to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to
their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast
to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes
observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology
of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature
and expansion rate is different for the slow and fast wind. 相似文献
8.
The Sun is the largest reservoir of matter in the solar system, which formed 4.6 Gyr ago from the protosolar nebula. Data
from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes
at energies of about 1 keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission’s
solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer
on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets
as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe
measured in situ in the solar wind. 相似文献
9.
R. A. Mewaldt C. M. S. Cohen G. M. Mason D. K. Haggerty M. I. Desai 《Space Science Reviews》2007,130(1-4):323-328
Data from ACE and GOES have been used to measure Solar Energetic Particle (SEP) fluence spectra for H, He, O, and Fe, over
the period from October 1997 to December 2005. The measurements were made by four instruments on ACE and the EPS sensor on
three GOES satellites and extend in energy from ∼0.1 MeV/nuc to ∼100 MeV/nuc. Fluence spectra for each species were fit by
conventional forms and used to investigate how the intensities, composition, and spectral shapes vary from year to year. 相似文献
10.
Johannes Geiss is a world leader and foremost expert on measurements and interpretation of the composition of matter that
reveals the history, present state, and future of astronomical objects. With his Swiss team he was first to measure the composition
of the noble gases in the solar wind when in the late 1960s he flew the brilliant solar wind collecting foil experiments on
the five Apollo missions to the moon. Always at the forefront of the art of composition measurements, he with his colleagues
determined the isotopic and elemental composition of the solar wind using instruments characterized by innovative design that
have provided the most comprehensive record of the solar wind composition under all solar wind conditions at all helio-latitudes.
He discovered heavy interstellar pickup ions, from which the composition of the neutral gas of the Local Interstellar Cloud
is determined, and the “Inner Source” of pickup ions. Johannes Geiss played a key role both in the in-situ measurements and
modeling of molecular ions in comets, and the interpretation of these data. He and co-workers measured the composition of
plasmas in the magnetospheres of Earth and Jupiter. Here we highlight Johannes Geiss’ many discoveries and seminal contributions
to our knowledge of the composition of matter of the Sun, solar wind, interstellar gas, early universe, comets and magnetospheres. 相似文献
11.
Daniel B. Reisenfeld Roger C. Wiens Bruce L. Barraclough John T. Steinberg Marcia Neugebauer Jim Raines Thomas H. Zurbuchen 《Space Science Reviews》2013,175(1-4):125-164
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition. The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003). 相似文献
12.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere
and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field
lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably
the cause of the observed extremely low values of the Ne/Mg abundance ratio.
In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential
magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary
of these dense structures must be considered.
In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting
components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations
and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
Douglas Gough 《Space Science Reviews》1998,85(1-2):141-158
Standard solar models, although they are free from the influence of much of the fluid motion that is bound to be present in the Sun, have been shown by helioseismology to represent the spherically averaged structure of the Sun amazingly well. This state of affairs has come about after painstaking refinements by a great many people of the pertinent microphysics, including that which controls the equation of state, the opacity, the nuclear reaction rates and the diffusion that inhibits gravitational segregation of chemical elements. It has instilled confidence in the modellers in being able to predict the composition of the solar interior. But there are consequences of the flow, related particularly to redistribution of chemical species, that can be difficult to identify observationally, yet which may degrade any inferences we might make. Their potential presence must at least be acknowledged by anyone who tries to asses the reliability of the models. This report summarizes the discussions in the preceding pages of this volume of the current theoretical and observational status of the subject, pointing to many of the caveats that have been raised, and attempting at the same time to put them into a seemingly coherent discourse in the context of our present understanding of the workings of the solar interior. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
Hardi Peter 《Space Science Reviews》1998,85(1-2):253-260
Ionization-diffusion mechanisms to understand the first ionization potential (FIP) fractionation as observed in the solar corona and the solar wind are reviewed. The enrichment of the low-FIP elements (<10 eV) compared to the high-FIP elements, seen in e.g. slow and fast wind or polar plumes, is explained. The behaviour of the heavy noble gases becomes understandable. The absolute fractionation, i.e. in relation to hydrogen, can be calculated and fits well to the measurements. The theoretical velocity-dependence of the fractionation will with used to determine the velocities of the solar wind in the chromosphere. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
Roberto Bruno Bruno Bavassano Raffaella D’amicis Vincenzo Carbone Luca Sorriso-Valvo Ermanno Pietropaolo 《Space Science Reviews》2006,122(1-4):321-328
The observations at different solar distances and latitudes, collected in the past three decades, and the results obtained
from more and more sophisticated numerical simulations allowed us to reach a good understanding on many aspects of the complex
phenomenon of solar wind turbulence. Moreover, new interesting insights in the theory of turbulence have been obtained, in
the past decade, from the point of view that considers a turbulent flow as a complex system, where chaotic behavior and well-established
scaling laws coexist. This review aims to provide a quick overview on the state of art in this research field with particular
focus on local generation mechanisms. 相似文献
16.
D. A. Brain 《Space Science Reviews》2006,126(1-4):77-112
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares
elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian
atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer
(ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks
in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived
in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated
with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment
has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is
highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars
with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data,
as well as multi-spacecraft observations. 相似文献
17.
We discuss quasi-static and dynamic models of the magnetotail response to perturbations imposed by the solar wind, focusing
particularly on the formation of thin current sheets, their structure and breakup. 相似文献
18.
The main effects caused by the interplanetary magnetic field (IMF) are analyzed in cases of supersonic solar wind flow around
magnetized planets (like Earth) and nonmagnetized (like Venus) planets. The IMF has a relatively weak strength in the solar
wind but it is enhanced considerably in the so-called plasma depletion layer or magnetic barrier in the vicinity of the streamlined
obstacle (magnetopause of a magnetized planet, or ionopause of a nonmagnetized planet). For magnetized planets, the magnetic
barrier is a source of free magnetic energy for magnetic reconnection in cases of large magnetic shear at the magnetopause.
For nonmagnetized planets, mass loading of the ionospheric particles is very important. The new created ions are accelerated
by the electric field related to the IMF, and thus they gain energy from the solar wind plasma. These ions form the boundary
layer within the magnetic barrier. This mass loading process affects considerably the profiles of the magnetic field and plasma
parameters in the flow region. 相似文献
19.
20.
R. Kallenbach F.M. Ipavich H. Kucharek P. Bochsler A.B. Galvin J. Geiss F. Gliem G. Gloeckler H. Grünwaldt S. Hefti M. Hilchenbach D. Hovestadt 《Space Science Reviews》1998,85(1-2):357-370
Using the high-resolution mass spectrometer CELIAS/MTOF on board SOHO we have measured the solar wind isotope abundance ratios
of Si, Ne, and Mg and their variations in different solar wind regimes with bulk velocities ranging from 330 km/s to 650 km/s.
Data indicate a small systematic depletion of the heavier isotopes in the slow solar wind on the order of (1.4±1.3)% per amu
(2σ-error) compared to their abundances in the fast solar wind from coronal holes. These variations in the solar wind isotopic
composition represent a pure mass-dependent effect because the different isotopes of an element pass the inner corona with
the same charge state distribution. The influence of particle mass on the acceleration of minor solar wind ions is discussed
in the context of theoretical models and recent optical observations with other SOHO instruments.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献