首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
叙述了高功率密度激光焊接时激光焊接等离子体对入射激光的反射、折射、吸收、散射等现象以及对激光焊接等离子体的诊断和抑制方法;介绍了对激光焊接等离子体的三维同步高速摄影以及通过三维同步高速摄影照片对激光焊接等离子体的三维重建.  相似文献   

2.
激光焊接过程中的等离子体研究现状   总被引:2,自引:0,他引:2  
激光焊接过程中产生的等离子体对激光束有屏蔽作用,降低了焊接熔深,甚至出现缺陷。本文在综述当前国内外激光等离子体研究现状的基础上,叙述了激光焊接过程中几种物理参量对等离子体的影响及等离子体的控制。  相似文献   

3.
利用光谱仪作为等离子体的诊断手段,开展了一系列实验,包括等离子体光谱强度与电源电压和频率的关系、等离子体光谱强度沿弦向的变化规律、降低气压以及冲入其它气体对等离子体发光强度的影响.实验中发现等离子体发光强度与电源电压是线性关系而频率对发光强度影响不大;发光强度沿弦向变化规律近似为高斯分布;降低气压、冲入氦气都可增强等离子体发光强度.这些工作为开展进一步的实验研究以及数值模拟工作奠定了基础.   相似文献   

4.
利用实验室自行研制的紫外预电离CO2激光器进行了激光等离子体实验,实验采用底面直径均为60mm,焦距分别为5 mm和10 mm的两种抛物面光船。介绍了激光等离子体光谱和明显的特征谱线,以及激光等离子体温度估计模型;分析了两种光船对激光等离子体的影响。实验表明:相同底面直径10 mm焦距光船产生的等离子体信号峰值和持续时间均略大于5 mm焦距光船;10 mm焦距光船产生的等离子体温度明显高于5 mm的,最大温度产生时间比5 mm光船要晚一些。  相似文献   

5.
探讨了激光深熔焊过程中焊接熔池流体流动的各种驱动力,分析了熔池流动热边界层和固液界面粘性边界层的作用,研究了激光小孔出口的等离子体焰流对熔池Marangoni流的影响.  相似文献   

6.
激光冲击强化(Laser shock peening,LSP)是一种新型抗疲劳延寿制造技术,可应用于航空发动机关键零部件。现有LSP离线检测方法存在“质量盲区”的问题,为提高LSP加工质量的一致性、可靠性和稳定性,有必要开展LSP过程多源信息的精确感知和靶材表面完整性在线评估研究。从LSP瞬态高能过程所释放的两类重要物理信息入手,即激光诱导等离子体冲击波(Laser induced plasma shock wave,LIPSW)和激光诱导等离子体光谱(Laser induced plasma spectroscopy,LIPS),分别综述了LSP动态过程两类信息监测感知的研究现状,以及多源信息融合(Multi-source information fusion,MSIF)技术在LSP领域的研究进展。最后探讨了亟待解决的科学问题和现存的挑战。  相似文献   

7.
近年来激光深熔焊接技术在异种合金的高效、优质连接中的应用受到了研究人员的广泛关注。依据钢/铝异种合金接头界面反应过程中钢母材是否熔化,分别从激光深熔钎焊和激光深熔焊接两个角度来论述钢/铝异种合金激光深熔焊接工艺的研究进展。在激光深熔钎焊方面,从不同形式的激光热源形式来讨论钢/铝异种合金的国内外研究现状;在激光深熔焊接方面,按照接头的形式不同来分析钢/铝异种合金激光深熔焊接的国内外研究进展。最后,提出了钢/铝异种接头激光深熔焊接技术研究的重要方向。  相似文献   

8.
作者用麦克风传感器、光电管传感器和电荷传感器对焊接过程中的等离子体进行检测,利用检测信号可以准确区分稳定深熔焊、稳定热导焊和模式不稳定激光焊接三种过程,提出了用等离子体信号对最佳熔深入焦量进行控制的方法。  相似文献   

9.
通过联立电磁波波动方程与磁化等离子体中电子的运动方程,得到了电磁波传播的色散方程,求解色散方程得到了磁化等离子体对电磁波的折射率及逆韧致吸收系数。可以得出,随着外加磁场的增强,等离子体截止波长明显变短,导致低频电磁场无法穿过等离子体。对于1μm左右波长的电磁波,等离子体的折射率和逆韧致吸收系数几乎不随外加磁场强度的变化而变化。对于10μm左右波长的电磁波,等离子体的折射率随外加磁场强度的增强而减小,而逆韧致吸收系数随外加磁场强度的增强而增大。理论分析和数值结果阐明了电磁波在磁化等离子体中的传输机理,对研究激光复合焊接中磁场和等离子体对激光传播的影响具有指导意义。  相似文献   

10.
镍钛形状记忆合金具有优良的力学性能、腐蚀抗力、形状记忆效应、超弹性、阻尼特性和生物相容性等特点,其应用范围涉及航空、航天、机械、电子、化工、能源、建筑和医学等领域.综述了镍钛形状记忆合金激光焊接技术的研究进展,指出了今后的发展前景与研究方向.  相似文献   

11.
液相火花放电现象是金属微弧氧化表面处理时典型特征,发射光谱(OES)技术是表征微弧放电光谱特征和探索微弧氧化机理的有效手段。本文综述了铝、镁、钛等金属微弧氧化过程中发射光谱的研究现状。介绍微弧放电区等离子体的电子温度、电子密度等特征参数计算原理。重点关注了不同金属基体材料、电参数及电解液组成条件下,等离子体放电行为对微弧氧化膜结构的影响规律,并比较不同放电模型的异同。基于OES谱线评估得到的各种金属微弧等离子体温度为3000~10000 K,为放电通道内快速熔化-凝固过程促进陶瓷膜生长机制提供证据。  相似文献   

12.
Goedbloed  J.P. 《Space Science Reviews》2003,107(1-2):353-360
The properties of magnetohydrodynamic waves and instabilities of laboratory and space plasmas are determined by the overall magnetic confinement geometry and by the detailed distributions of the density, pressure, magnetic field, and background velocity of the plasma. Consequently, measurement of the spectrum of MHD waves (MHD spectroscopy) gives direct information on the internal state of the plasma, provided a theoretical model is available to solve the forward as well as the inverse spectral problems. This terminology entails a program, viz. to improve the accuracy of our knowledge of plasmas, both in the laboratory and in space. Here, helioseismology (which could be considered as one of the forms of MHD spectroscopy) may serve as a luminous example. The required study of magnetohydrodynamic waves and instabilities of both laboratory and space plasmas has been conducted for many years starting from the assumption of static equilibrium. Recently, there is a outburst of interest for plasma states where this assumption is violated. In fusion research, this interest is due to the importance of neutral beam heating and pumped divertor action for the extraction of heat and exhaust needed in future tokamak reactors. Both result in rotation of the plasma with speeds that do not permit the assumption of static equilibrium anymore. In astrophysics, observations in the full range of electromagnetic radiation has revealed the primary importance of plasma flows in such diverse situations as coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies. These flows have speeds which substantially influence the background stationary equilibrium state, if such a state exists at all. Consequently, it is important to study both the stationary states of magnetized plasmas with flow and the waves and instabilities they exhibit. We will present new results along these lines, extending from the discovery of gaps in the continuous spectrum and low-frequency Alfvén waves driven by rotation to the nonlinear flow patterns that occur when the background speed traverses the full range from sub-slow to super-fast. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The advent of the grating spectrometers onboard Chandra and XMM-Newton opened up a new era in plasma diagnostics of compact binaries. High resolution spectroscopy using these spectrometers is of particular use in investigating accretion plasmas in cataclysmic variables (CVs) because they show a wealth of emission lines owing to their optically thin thermal nature. In this review, I present recent progress on density measurements of the plasma in magnetic CVs by means of He-like triplet and iron L lines, and the outcome of line velocity measurements in the dwarf nova SS Cygni in outburst, to demonstrate the potential power of high resolution spectroscopy to elucidate the geometry of the plasma. In the end, our expectations for the Soft X-ray Spectrometer onboard the forthcoming X-ray mission Astro-H are summarized.  相似文献   

14.
The EUV wavelength regions is rich in emission lines from the transition region and the corona. Spectroscopic techniques have been used extensively to determine the physical conditions in the solar atmosphere for such diverse phenomena as coronal holes, active regions, sunspots, flares, etc. The diagnostics and dynamics of plasmas, both homogeneous and inhomogeneous plasmas, are reviewed. The future projects such as the CDS and SUMER instruments on SOHO have been discussed as they cover EUV wavelength region and will provide a wealth of observational data with excellent spatial, spectral, and temporal resolution.  相似文献   

15.
Successfully modeling X-ray emission from astrophysical plasmas requires a wide range of atomic data to be rapidly accessible by modeling codes, enabling calculation of synthetic spectra for fitting with observations. Over many years the astrophysical databases have roughly kept pace with the advances in detector and spectrometer technology. We outline here the basic atomic processes contributing to the emission from different types of plasmas and briefly touch on the difference between the methods used to calculate this data. We then discuss in more detail the different issues addressed by atomic databases in regards to what data to store and how to make it accessible. Finally, the question of the effect of uncertainties in atomic data is explored, as a reminder to observers that atomic data is not known to infinite precision, and should not be treated as such.  相似文献   

16.
Laser produced plasmas are a useful source of highly stripped ions for XUV spectroscopy and it is therefore important to understand the relation between the incident laser flux, plasma temperature and ionisation equilibrium.  相似文献   

17.
Large solar flares are often accompanied by both emissions of high-energy quanta and particles. The emissions such as gamma-ray and hard X-ray photons are generated due to the interaction of high-energy nuclei and electrons with gases ambient in the flare regions and the solar atmosphere. Nonthermal radio emissions of wide frequency band are produced from energetic electrons while being decelerated by the action of plasmas and magnetic fields ambient in the flare site and its neighboring region. To understand the emission mechanism of these high-energy quanta on the Sun, it is, therefore, necessary to find the acceleration mechanism for both nuclei and electrons, which begins almost simultaneously with the onset of solar flares.A part of the accelerated nuclei and electrons are later released from the solar atmosphere into the outer space and eventually lost from the space of the solar system. Their behavior in the interplanetary space is considered to study the large-scale structure of plasmas and magnetic fields in this space.The observations and studies of high-energy phenomena on the Sun are thus thought of as giving some crucial hint important to understand the nature of various high-energy phenomena being currently observed in the Universe.  相似文献   

18.
Recent developments of the physics of complexity in space plasmas are briefly reviewed. The definition of dynamical complexity is provided. Concepts of probability distribution functions, wavelet transforms, intermittent turbulence, multifractal processes and extreme events are described. Future directions for this emerging field are discussed.  相似文献   

19.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

20.
铁电阴极用于中和器研究   总被引:1,自引:1,他引:0       下载免费PDF全文
分析了当前小功率电推进器对零流动无推进剂阴极的需求现状。提出铁电阴极用于小功率电推进中和器的可行性。研究了厚度为0.5 mm的锆钛镧酸铅(PLZT)铁电陶瓷在低激励电压(1.0~1.2 kV)下的电子发射特性。采用单极性正高压脉冲和80 Hz重复脉冲作为激励源,在收集极获得了脉宽为320~3000 ns,最高峰值分别为34 A和27 A的发射电流。在10-5Torr的真空环境中得到了可靠的电子发射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号