首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study on solar coronal activities related to the 11-year activity cycle is presented from the Yohkoh soft X-ray observations. Yohkoh was launched in August 1991, just after the solar maximum of the cycle 22 and continues to observe the Sun in the declining phase of the magnetic activity cycle toward the solar minimum. The soft X-ray flux from the whole Sun in the declining phase essentially decreases with the size of active regions. The X-ray intensity in quiet regions in the declining phase decreases with the magnetic flux observed at the photosphere. The whole-Sun soft X-ray flux does not monotonically decrease, but there are periodic enhancements of the flux with about a one-year interval. The activity appears as bright clusters in the butterfly diagram of the soft X-ray intensity and corresponds to the emergence of complexes of activity in the sunspot zones. The high-latitude activity is also studied, and we find that the X-ray intensity of high-latitude regions fluctuates with time scale of about one year.  相似文献   

2.
The high-speed plasma streams in the solar wind are investigated during the solar cycles nos. 20–22 (1964–1996), separately on the two types of streams according to their solar origin: the HSPS produced by coronal holes (co-rotating) and the flare-generated, in keeping with the classification made in different catalogues. The analysis is performed taking into account the following high-speed stream parameters: the durations (in days), the maximum velocities, the velocity gradients and, the importance of the streams. The time variation of these parameters and the high-speed plasma streams occurrence rate show an 11-year periodicity with some differences between the solar cycles considered. A detailed analysis of the high-speed stream 11-year cycles is made by comparison with the “standard” cycles of the sunspot relative number (Wolf number). The different behaviour of the high-speed stream parameters between even and odd solar cycles could be due to the 22-year solar magnetic cycle. The increased activity of the high-speed plasma streams on the descendant phases of the cycles, regardless of their solar sources, proves the existence of some special local conditions of the solar plasma and the magnetic field on a large scale that allow the ejection of the high energy plasma streams. This fact has led us to the analysis the stream parameters during the different phases of the solar cycles (minimum, ascendant, maximum and, descendant) as well as during the polar magnetic field reversal intervals. The differences between the phases considered are pointed out. The solar cycles 20 and 22 reveal very similar dynamics of the flare-generated and also co-rotating stream parameters during the maximum, descendant and reversal intervals. This fact could be due to their position in a Hale Cycle (the first component of the 22-year solar magnetic cycle). The 21st solar cycle dominance of all co-rotating stream parameters against the 20th and 22nd solar cycle ones, during almost all phases, could be due to the same structure of a Hale Cycle – solar cycle 21 is the second component in a 22-year SC. During the reversal intervals, all high-speed stream parameters have comparable values with the ones of the maximum phases of the cycles even if this interval contains a small part of the descendant branch (solar cycles 20 and 22).  相似文献   

3.
The decay phase of the sunspot cycle 23 exhibited two unusual features. First, it lasted too long. Second, the interplanetary magnetic field intensity at earth orbit reached the lowest value since in situ measurements in space began in October 1963. These physical anomalies significantly altered the early forecasts for the sunspot activity parameters for cycle 24, made by several colleagues. We note that there was a significant change in the solar behavior during cycle 22. We discuss the observed trends and their effect on our empirical solar activity forecast technique, leading to our prediction for cycle 24 parameters; cycle 24 will be only half as active as cycle 23, reaching its peak in May 2013. We speculate on the possible implications of this outcome on future earth climate change and the ensuing socio-economic consequences.  相似文献   

4.
Unlike Earth’s dipolar magnetic fields, solar magnetic fields consist of wide ranges of length-scales and strengths, and interestingly, they evolve in a cyclic fashion with a 22-year periodicity. A magnetohydrodynamic dynamo operating in the Sun is most likely responsible for producing the solar magnetic activity cycle. While the first solar dynamo models were built half a century ago, recent views differ significantly from those models. According to widely accepted present concepts, the large-scale solar dynamo is of flux-transport type, which involves three basic processes: (i) generation of toroidal fields by shearing the pre-existing poloidal fields by differential rotation (the Ω-effect); (ii) re-generation of poloidal fields by lifting and twisting the toroidal fluxtubes (the α-effect); (iii) flux transport by meridional circulation. This class of dynamos has been successful in explaining many large-scale solar cycle features, including a particularly difficult one – the correct phase relationship between the equatorward-migrating sunspot belt and the poleward drifting large-scale, diffuse fields. The dynamo cycle period in such models is primarily governed by the meridional flow speed near the bottom of the convection zone. After briefly reviewing the historical background, we will present the successes of flux-transport dynamos, including their predictive capability. For example, we will demonstrate how the meridional circulation plays a key role in governing the Sun’s memory about its own magnetic field, and how a flux-transport dynamo-based predictive tool can explain the cause of the very slow polar reversal in the so-called “peculiar” cycle 23 compared to those in cycles 20, 21 and 22. We will close by presenting explanations for certain long-term variability using these models, such as, what may have maintained the observed cyclic variation in slow solar wind flow during Maunder minima, in the presence of near zero solar activity.  相似文献   

5.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

6.
基于EMD的东亚夏季风年代际变化特征及与太阳活动的关系   总被引:1,自引:1,他引:0  
应用英国气象局哈德利气象研究中心(HadleyCenter)及美国环境预报中心和国家大气研究中心(NCEP/NCAR)的海平面气压(SeaLevelPressure,SLP)资料归一化得出1850-2011年的东亚夏季风指数,利用经验模态分解(EmpiricalModeDecomposition,EMD)方法对其变化特征进行分析,得到东亚夏季风指数的周期特征.太阳黑子活动与东亚夏季风活动存在相同的11年及80年左右周期,其中11年周期变化尤为明显.对比1850-2011年间太阳黑子数与东亚夏季风指数经验模态分解后的11年周期变化分量,发现两者波动振幅变化基本一致.   相似文献   

7.
Statistical properties of the daily averaged values of the solar activity (sunspot numbers, total solar irradiance and 10.7 cm radio emission indices), the solar wind plasma and the interplanetary magnetic field parameters near the Earth’s orbit are investigated for a period from 1964 to 2002 covering the maxima of four solar cycles from 20th to 23rd. Running half-year averages show significant solar cycle variations in the solar activity indices but only marginal and insignificant changes in comparison with background fluctuations for heliospheric bulk plasma and magnetic field parameters. The current 23rd cycle maximum is weaker than 21st and 22nd maxima, but slightly stronger than 20th cycle in most of solar and heliospheric manifestations.  相似文献   

8.
观测资料分析表明,AR5395活动区演化具有周期性的特征,软X射线峰值流量F变化周期为24.3小时,X射线耀斑出现率Nx,具有12.2小时的周期性,活动区黑子群面积Sx的变化呈现24.4小时的周期。这3个周期变化量的相位关系表明:(1)X级耀斑往往发生在黑子面积减小的位相;(2)在1个周期内,黑子群面积达到最大值约需16小时,恢复到大耀斑前水平约需8小时;(3)在X级大耀斑前约12小时,小级别耀斑出现率达到峰值。分析显示,AR5395活动区似乎工作于大耀斑能量储存—释放—储存周期性循环的极限状态之中。   相似文献   

9.
An exploratory study is made of the influence, during the equinoxes, of the interplanetary magnetic field (IMF) sector structure on the ionospheric F-region using ionosonde data from several equatorial stations for a 3-yr period around the 19th sunspot cycle maximum. It is found that, compared with days having positive IMF polarity, the post-sunset increase of h'F near the dip equator and the depth of the equatorial ionization anomaly (EIA) are reduced during the vernal equinox and enhanced during the antumnal equinox on days with negative IMF polarity. Similar trends are also noted in the data for the 20th sunspot cycle maximum, but with reduced amplitude. The systematic changes in the F-region characteristics suggest a modification of the equatorial zonal electric fields in association with the IMF polarity-related changes in the semi-annual variation of geomagnetic activity.  相似文献   

10.
利用EMD方法提取太阳活动周期成分   总被引:9,自引:0,他引:9  
EMD(经验模态分解)方法在处理非线性及非平稳时间序列时表现出了很大的优势和应用潜力.利用EMD方法研究太阳活动周期,对110年(1894-2003)和55年(1949-2003)的太阳黑子数月均值进行分解,分别得到一系列模式和一个趋势项,其中都可能包含有1.3至1.4年周期分量,25至30个月QBO(准双年振荡)分量,11年太阳周分量和22年Hale周分量.其中11年周期分量幅度最大,变化特征与太阳黑子数原始数据具有很高的相似性.不同于传统方法,EMD方法给出了太阳活动在不同时间尺度上各自分离的变化特征.   相似文献   

11.
基于小波与交叉小波分析的太阳黑子与宇宙线相关性研究   总被引:1,自引:0,他引:1  
利用小波分析和交叉小波分析方法, 根据太阳黑子数以及Huancayo和Climax两个测站的月均宇宙线数据, 分析了两个测站的月均宇宙线周期变化, 同时利用太阳黑子数R12对Climax站宇宙线流量进行预测研究. 小波分析结果表明, 太阳黑子与宇宙线除存在显著的11年周期外, 太阳活动高年期间还存在1~6个月尺度的周期特性, 在第22太阳周活动高年时还出现了6~8和1~22个月的变化周期; 交叉小波分析结果表明, 在130个月左右的周期上宇宙线与太阳黑子具有显著的负相关性, 并且宇宙线的变化滞后太阳黑子约8个月; 分别采用预测时刻和8个月前的太阳黑子数, 预测相对误差为3.8912%和3.2386%. 本文方法同样适用于估算其他空间天气参量之间的周期和相关性, 提高各种空间天气参量的预测或预报精度.   相似文献   

12.
The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ~27?days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc.In this article, the periodicity of ~27?days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30?days are canceled.The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°.The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non-radiative interactions between the solar wind and the magnetosphere. The 27-day signal obtained in the magnetic activity was compared with the signals found in the other parameters resulting in a series of cross-correlations curves with maximum correlation between 3 and 5?days of delays for the radiative and between 0 and 1?days of delay for the non-radiative parameters. This result supports the idea that the physical process responsible for the 27-day signal in the magnetic activity is related to the solar wind and not to the solar electromagnetic radiation.  相似文献   

13.
A statistical study has been made of cosmic ray intensity, as observed by a neutron monitor, and of selected solar and geophysical parameters in a search for phenomena which may be associated with the reversal of the solar magnetic field. The results reported here utilized the Zurich sunspot number and the geomagnetic aa index. There is an intriguing, but not conclusive, result that shows a vast difference in the correlation of the neutron monitor intensity and the aa index between successive periods bounded by solar maxima. Between the 19th solar cycle maximum (March 1958) and the 20th solar cycle maximum (November 1968), and the 20th solar cycle maximum (November 1968) and the 21st solar cycle maximum (assumed to be December 1979 for this study) the correlations are ?0.86 and +0.28 respectively.  相似文献   

14.
Two phenomena connected with the maximum phase of the 11-year solar cycle in the galactic cosmic ray intensity – the change in the energy dependence of the intensity variations and the double-peak structure in the intensity modulation time profile – are considered for the last five solar cycles (Nos. 19–23). The distinct 22-year cycle in the magnitude of the so called energy hysteresis is observed.The periods of the solar cycle maximum phase in the galactic cosmic ray intensity, characterized by the specific energy dependence of the intensity, are estimated. It is found that the double-peak structures belonging to the solar cycle maximum phase and those around it are very similar both in the amplitude and in its energy dependence.  相似文献   

15.
We have used the Lempel–Ziv measure to describe the complexity in sunspot activity during the solar cycles 18–23. In particular, we examined the time series of daily sunspot numbers in the northern and southern hemispheres in each of the six cycles and calculated the Lempel–Ziv complexity (LZC) value for each time series. Our results indicate that in the even cycles, the LZC values of the sunspot numbers in the two hemispheres are very close to each other, whereas in the odd cycles they differ significantly between the two hemispheres. We also find that within each hemisphere the LZC varies from cycle to cycle. This even–odd cycle parity reflects the variations in inter-hemispheric strengths of the solar magnetic field leading to different temporal distributions of sunspots in the two hemispheres. The degree of complexity may influence the predictability of sunspot activity in the two hemispheres during the various cycles. Although the physical implication of the results is not clear, these results may stimulate new ideas into modeling the complex dynamics of the solar dynamo.  相似文献   

16.
We present a study of the galactic cosmic ray modulation for sunspot cycle 23. We use the monthly and the annual mean hourly, pressure corrected, data from neutron monitors of the global network (monthly rate is calculated as the average of the hourly pressure corrected values). We draw attention to an asymmetry in the galactic cosmic ray (GCR) recovery during odd and even cycles for the monthly mean hourly rate data. For over half a century of observations, we find that the recovery for the odd cycles is to a higher level than for the even cycles. Qualitatively the effect is ascribed to charged particle drifts in inhomogeneous interplanetary magnetic field. Even so it has not been possible to arrive at a quantitative, self-consistent, explanation in terms of drifts at higher and lower GCR rigidities. We also study the rigidity dependence of the amplitude of 11-year modulation over a wide range (1–200 GV) of GCR spectrum; it is a power law in rigidity with an exponent −1.22. We discuss the implication of these findings on quasi-linear diffusion theories of modulation. We reflect on GCR recovery pattern for 2006–2009.  相似文献   

17.
Reported heliospheric current-sheet displacements from the equatorial plane have been found to be in agreement with north-south asymmetries of the solar magnetic field. Mean heliospheric sector width estimations in the period 1947–1977 have shown that the heliospheric current sheet demonstrates an asymmetric placement with respect to the solar equator. This asymmetry is very prominent in the epochs of the solar cycle minima while it almost disappears in the epochs of maxima. At the same time, the sums of the maxima values of the sunspot magnetic field intensity showed in the epochs of minimum a characteristic asymmetry which implies an essential conjunction among the heliospheric current sheet, the solar cycle and the solar magnetic field. The main conclusion which could be derived of these observations is that the heliospheric current sheet has its origin on the solar surface while its location with respect to the solar equator appears to be affected by the variability of the lower layers of the solar interior.  相似文献   

18.
It is well known that the irregularities of the magnetic field are intimately related to the motion of charged particles. Although transport theories need the spatial and time variations of the magnetic field as input, in situ observations are very limited. Ulysses observations have provided a major step forward by entering the unexplored high latitude regions of the heliosphere, the knowledge of which is vital to interpret particle flux measurements, even at the ecliptic. We analyze the magnetic field data of Ulysses during the mission to study the waves and discontinuities in the heliosphere at different locations, covering a total sunspot cycle. Various tools are employed, including power spectral and structure function analysis. A remarkable difference was found between the fluctuations in the fast and slow solar wind. We argue that the latitudinal extent of the high speed solar wind contributes significantly to the latitudinal variation of the transport parameters, which should also affect the 11 (and 22) year modulation cycle.  相似文献   

19.
In this paper, the phase asynchrony between coronal index and sunspot numbers is investigated. It is found that, (1) the sunspot numbers begin one month earlier than coronal index, which should mathematically lead to phase asynchrony between them but with a slight effect; (2) the 11-year Schwabe cycle is the only one period with statistical significance for coronal index and sunspot numbers, and the difference between the length of the Schwabe cycle of them should also lead to phase asynchrony between them; (3) although coronal index and sunspot numbers are coherent in low-frequency components corresponding to the 11-year Schwabe cycle, they are asynchronous in phase in high-frequency components; (4) their different definitions and physical meanings may be a major reason why there is a phase asynchrony between them.  相似文献   

20.
本文研究了太阳黑子的致冷问题,认为太阳黑子磁场受其流场扰动,形成大量的磁流体波,这种波把太阳黑子的热能转变成波能,以阿尔文速度沿着磁场传播,把能量携带出黑子区域,致使太阳黑子冷却。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号