首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
针对空间微放电效应中介质材料的带电状态对二次电子发射的复杂影响,文章采用数值模拟的方法,首次从带电平衡模式的角度研究了介质材料受电子照射后的二次电子动态发射特性。数值模拟模型结合了蒙特卡罗方法和时域有限差分方法,考虑了弹性和非弹性碰撞的电子散射过程,以及迁移、扩散和捕获等作用的电荷输运过程。通过对带电状态平衡模式的划分,研究了介质二次电子发射及带电状态的暂态变化、微观分布、稳态特性。研究结果表明:介质表面的带电过程可以根据介质表面电流的变化程度分为二次电子平衡模式、泄漏电流平衡模式及共同模式;二次电子平衡模式下样品呈现表面带电状态,而泄漏电流模式下呈现深层带电状态。泄漏电流平衡模式转向二次电子平衡模式过程中,稳态二次电子产额增加,表面负电位增强;总电荷量和平衡时间常数由于平衡模式的改变呈现相反的变化趋势。研究方法和结果有助于介质二次电子的机理研究和微放电效应的工程抑制技术。  相似文献   

2.
现有关于介质微波部件微放电的相关研究多从谐振条件及出射电子产额方面出发分析微放电发生原因及其抑制方法,而很少分析航天器表面电位对于微放电发生的影响。文章对碰撞电子与介质表面相互作用后二次电子发射特性进行综合分析;重点研究了不同介质表面初始电位情况下,恒定能量的电子束流持续轰击介质表面时介质表面电位及电子束流碰撞能量的变化趋势;并对稳定后的电子束流碰撞能量和介质表面电位进行了理论计算,计算结果表明系统平衡状态时的表面电位受初始电子能量及第二临界能量影响有明显改变。此外,文章探究了单一能量及连续能量入射介质表面时表面带电对于二次电子发射的影响,研究表明:带有电位φ的表面会使临界能量发生偏移量-eφ的相对偏移;对于连续能量的入射电子束,介质表面带电会很大程度上改变入射电子束的能量范围,从而影响微放电发生的风险。  相似文献   

3.
随着微放电效应研究的不断深入,低能电子影响在微放电过程中越来越不可忽视。当前常用的微放电模型在处理低能电子问题上具有一定的局限性,为了精确模拟这一过程,在深入研究二次电子和背散射电子发射理论的基础上,分别针对材料表面条件不同引起的二次电子发射系数不确定性、低能电子的背散射系数以及电子入射角等问题进行了分析和讨论,并在此基础上建立了一个二次电子发射模型,最后通过数值计算讨论了模型的正确性和适用范围。这一模型同时考虑材料表面条件参数、低能电子的背散射系数以及入射角等因素影响,能够兼容较低能量电子的二次发射,提升微放电数值模拟的精确度和适用性,为微放电数值模拟的发展起到推进作用。  相似文献   

4.
材料表面的二次电子发射会触发和维持空间高功率射频器件的共振雪崩放电现象,这种现象又被称为微放电效应。微放电效应是限制空间大功率微波部件应用的关键问题之一。从微放电作用的机理出发,首先介绍了两种微放电类型(单表面与双表面)的基本物理机理;然后总结了当前主流的微放电抑制方法并给出各自应用于空间大功率微波部件时的限制。针对空间大功率微波部件微放电抑制的特殊问题,综述了国内近5年来在表面处理法抑制微放电领域的研究成果并预测了微放电抑制技术的发展趋势。  相似文献   

5.
星载大功率复杂微波部件微放电效应数值模拟   总被引:1,自引:0,他引:1  
随着航天器有效载荷技术向高功率、小型化持续发展,复杂结构微波部件微放电数值模拟与阈值分析成为影响微放电分析的基础瓶颈问题。基于电磁时域有限差分计算方法与粒子模拟技术,结合二次电子发射模拟,提出了微放电电磁粒子联合仿真方法,数值模型中考虑了真实电子间的库仑力以及电子运动产生的电荷和电流变化对电磁场的影响,解决了复杂结构微波部件微放电三维数值模拟技术难题。实现了在统一的三维空间网格与时间步进行电磁场值演变计算、电子运动状态变化推进计算与二次电子产额与能量分布计算,基于得到的二次电子数目随时间变化趋势实现了微放电阈值预判,通过微放电电子随时间演化获得了微放电过程具体物理图像及放电位置,并与实际器件微放电实验进行了对比验证。结果表明,所提出的三维电磁粒子数值模拟方法可对大功率微波部件微放电效应的物理过程与具体放电位置进行三维描述,预测的阈值与微放电实验测量值吻合良好,误差小于1.2dB,验证了该方法的有效性与准确性,对于深入研究微放电效应微观物理机制、提高大功率微波部件微放电设计与分析水平具有重要意义。  相似文献   

6.
随着卫星有效载荷的射频功率越来越大,传统的微放电抑制方法已经无法满足大功率卫星有效载荷的需求。降低大功率射频部件内表面的二次电子发射系数是抑制微放电效应的重要方法之一,通过在金属银表面构造纳米量级ZnO阵列,实现了纳米尺度银陷阱结构的制备,研究了晶种制备方式、锌盐浓度对ZnO阵列生长的影响。结果表明,采用紫外照射法制备晶种获得的ZnO阵列在样片表面分布均匀,提高锌盐浓度可改善ZnO阵列的分布均匀性。分析了ZnO阵列排列密度对银膜构筑的影响,发现在低密度的ZnO阵列上更加容易镀覆金属银。因此,获得了镀银表面基于ZnO阵列的陷阱结构制备的工艺技术,实现金属银表面二次电子发射系数最大值降低36.3%。  相似文献   

7.
针对卫星表面受强电磁环境的影响导致的充放电问题,采用1D3V的粒子网格(PIC)方法对卫星表面铝材料在空间强电磁环境作用下的二次电子倍增作用规律进行研究。结果表明:星表铝材料在不同微波幅值、不同频率下的二次电子倍增效应存在“最易”倍增区间;二次电子倍增规律表现为在特定频率下,铝的二次电子倍增随着微波电场幅值的增大先增强后降低,表现出最佳倍增区间的效应;在特定幅值下,铝的二次电子倍增效应也会先增强后降低,但是整体表现出低频时倍增强,高频时抑制倍增的效应。  相似文献   

8.
针对二次电子发射系数对空间行波管收集极效率的影响,通过降低二次电子发射系数的方法,提高收集极的效率。并以无氧铜为例,使用化学刻蚀的方法对无氧铜样片进行表面处理,得到规则微孔阵列结构。使用二次电子发射测试平台对有无表面处理的无氧铜样片进行测量。测量结果显示,经化学刻蚀处理后的样片的最大二次电子发射系数由1.33减小到0.96,二次电子发射抑制效果明显。将测得的两个二次电子发射系数曲线用于空间行波管收集极的模拟设计中。选用已有的3个收集极结构模型,使用模拟软件进行仿真并计算收集极效率。结果表明,3个收集极结构模型的效率分别由原来的80.1%、57.5%、42.1%提高到82.55%、62.6%、59.2%。该结果对于空间行波管收集极的设计具有重要参考价值。  相似文献   

9.
航天器微波部件低气压放电效应是威胁航天器电子设备安全运行的一种特殊效应,而部件材料表面吸附气体脱附后为低气压放电提供了必要的条件。首先对比了微放电与低气压放电的区别,阐述了低气压放电破坏效应的产生根源。通过理论分析与计算,对比了热效应和电子轰击效应对不同键能吸附气体的脱附效率。结果发现,热致脱附主要造成低键能物理吸附气体的解吸附,电子轰击效应可造成高键能的化学吸附气体的解吸附。阐明了由二次电子倍增引起的电子诱导解吸附过程是星载微波部件内低气压环境的主要形成原因。最后讨论了通过部件材料表面处理及提高二次电子倍增阈值的低气压放电效应抑制方法。  相似文献   

10.
正微放电效应是在真空条件下,电子在外加射频场的加速下,在两金属表面间或介质表面上激发的二次电子发射与倍增效应。航天器有效载荷系统中微波部件一旦发生微放电,造成射频输出功率下降,微波传输系统驻波比增大,反射功率增加,信道阻塞,严重时物理损坏微波部件,所在通道有效载荷寿命缩短,甚至导致击穿使得航天器有效载荷失效。  相似文献   

11.
精确的金属材料二次电子发射系数模型对于计算空间大功率微波部件的微放电功率阈值至关重要,而现有的二次电子发射系数模型在准确性和工程应用两方面不能兼顾。通过分析二次电子的逸出几率,结合修正的Bethe能量损失规律,建立了金属材料二次电子发射系数的解析模型。进一步以未清洗的和Ar离子清洗过的Ag材料为例,用解析模型对试验测量值进行了拟合,在获得解析模型中关键参数的基础上建立了Ag材料二次电子发射系数模型。计算结果显示,在不同入射角度下未清洗和清洗Ag 材料的模型计算值与试验值的均方差在4%以内,表明提出的解析模型在减少拟合参数的基础上能够获得具体金属材料精确的二次电子发射系数模型,可用于精确模拟空间大功率微波部件的微放电功率阈值和加速器内部的电子云浓度。  相似文献   

12.
介质材料的动态特性是二次电子发射特性研究中的重要组成部分。通过数值模拟方法建立有效二次电子收集效率模型,可研究多种测量参数对介质动态特性的共同作用。模拟结果表明,空间电场和收集极结构对有效二次电子收集极效率的影响有一定相关性,收集极电位增大能提高有效二次电子收集效率,而动态过程中的半高宽时间则线性增加。另外收集极结构变化能够影响空间电场的作用效果。二者通过直接影响收集效率,间接改变表面电荷积累来引起动态特性的变化。入射束流则可直接影响表面电荷积累速度,使得半高宽时间线性增加或减小。研究结果对于揭示介质材料带电产生的动态过程以及指导实验准确测量二次电子发射系数具有科学意义。  相似文献   

13.
为解决电子倍增器、场发射阴极和粒子/光子探测器现有阴极材料次级发射系数低且发射不稳定的问题,对微波等离子体化学气相沉积(MicrowavePlasmaChemicalVaporDeposition,MPCVD)法结合H等离子体表面处理工艺制备的不同B2H6/CH4浓度的硼掺杂金刚石薄膜的次级发射能力进行了研究。样品表面扫描电子显微镜和拉曼光谱分析结果显示,硼掺杂金刚石膜表面形貌与未掺杂的金刚石膜相似,样品表面均为高纯度的金刚石相。将置于空气中数日且未经任何表面处理的硼掺杂金刚石样品进行次级电子发射性能测试,结果显示一次电子入射能量为1keV时,得到高达18.3的二次电子发射系数。试验证实这种具有高二次电子发射系数的硼掺杂金刚石膜,暴露空气中由于表面氧化会破坏其表面的负电子亲和势,而真空中加热会使表面重新恢复负电子亲和势,这种负电子亲和势的完整保留,提高了该材料次级发射的稳定性,在器件中具有重要的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号