首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, \(\sim40~\mbox{kpc}\) in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We’ll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.  相似文献   

2.
Recent spectroscopic results on stellar and solar abundances are reviewed with special reference to (a) Standard abundance distribution (Sun, hot stars, diffuse nebulae); (b) Abundance peculiarities related to stellar evolution (red giants showing results of H-burning and s-process, peculiar and metallic-lined stars); and (c) Population effects that may be related to the evolution of the Galaxy (correlation between stellar age and metal abundance, differences in details of heavyelement mixture in atmospheric composition of normal stars that have not reached an advanced evolutionary stage).  相似文献   

3.
Old-aged stellar distance indicators are present in all Galactic structures (halo, bulge, disk) and in galaxies of all Hubble types and, thus, are immensely powerful tools for understanding our Universe. Here we present a comprehensive review for three primary standard candles from Population II: (i) RR Lyrae type variables (RRL), (ii) type II Cepheid variables (T2C), and (iii) the tip of the red giant branch (TRGB). The discovery and use of these distance indicators is placed in historical context before describing their theoretical foundations and demonstrating their observational applications across multiple wavelengths. The methods used to establish the absolute scale for each standard candle is described with a discussion of the observational systematics. We conclude by looking forward to the suite of new observational facilities anticipated over the next decade; these have both a broader wavelength coverage and larger apertures than current facilities. We anticipate future advancements in our theoretical understanding and observational application of these stellar populations as they apply to the Galactic and extragalactic distance scale.  相似文献   

4.
The dynamical and chemical effects of the Galactic Wind are discussed. This wind is primarily driven by the pressure gradient of the Cosmic Rays. Assuming the latter to be accelerated in the Supernova Remnants of the disk which at the same time produce the Hot Interstellar Medium, it is argued that the gas removed by the wind is enriched in the nucleosynthesis products of Supernova explosions. Therefore the moderate mass loss through this wind should still be able to remove a substantial amount of metals, opening the way for stars to produce more metals than observed in the disk, by e.g. assuming a Salpeter-type stellar initial mass function beyond a few Solar masses. The wind also allows a global, physically appealing interpretation of Cosmic Ray propagation and escape from the Galaxy. In addition the spiral structure of the disk induces periodic pressure waves in the expanding wind that become a sawtooth shock wave train at large distances which can re-accelerate “knee” particles coming from the disk sources. This new Galactic Cosmic Ray component can reach energies of a few×1018 eV and may contribute to the juncture between the particles of Galactic and extragalactic origin in the observed overall Cosmic Ray spectrum.  相似文献   

5.
The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.  相似文献   

6.
An accurate value of the D/H ratio in the local interstellar medium (LISM) and a better understanding of the D/H variations with position in the Galactic disk and halo are vitally important questions as they provide information on the primordial D/H ratio in the Galaxy at the time of the protosolar nebula, and the amount of astration and mixing in the Galaxy over time. Recent measurements have been obtained with UV spectrographs on FUSE, HST, and IMAPS using hot white dwarfs, OB stars, and late-type stars as background light sources against which to measure absorption by D and H in the interstellar medium along the lines of sight. Recent analyses of FUSE observations of seven white dwarfs and subdwarfs provide a weighted mean value of D/H = (1.52±0.08) × 10−5 (15.2 ± 0.8 ppm), consistent with the value of (1.50 ± 0.10) × 10−5 (15.0 ± 1.0 ppm) obtained from analysis of lines of sight toward nearby late-type stars. Both numbers refer to the ISM within about 100 pc of the Sun, which samples warm clouds located within the Local Bubble. Outside of the Local Bubble at distances of 200 to 500 pc, analyses of far-UV spectra obtained with the IMAPS instrument indicate a much wider range of D/H ratios between 0.8 to 2.2 ppm. This portion of the Galactic disk provides information on inhomogeneous astration in the Galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the 3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M ) to intermediate-mass (M∼2–5M ) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths, our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature, excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”.  相似文献   

8.
The stellar Initial Mass Function (IMF) suggests that stars with sub-solar mass form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre–main-sequence (PMS) evolutionary phase, i.e., they have not started their lives on the main-sequence yet. The peculiar nature of these objects and the contamination of their samples by the fore- and background evolved populations of the Galactic disk impose demanding observational techniques, such as X-ray surveying and optical spectroscopy of large samples for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the metal-poor companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of the above techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope within the last five years yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of star-forming regions in these galaxies, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of the PMS stellar content of the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.  相似文献   

9.
A theoretical counterpart to the Barnes-Evans relation between stellar surface brightness and V-R color has been calculated from model atmospheres for parameters appropriate to RR Lyrae stars. Such a relation can be used to derive stellar angular diameters from V,R photometry and, when applied to variable stars and combined with a radial velocity curve, to derive radii, distances, and absolute magnitudes by the method of Barnes et al. (1977, MNRAS,178, 661). This was done for RR Lyr and X Ari using the photometry of Moffett and Barnes (1980, private communication) and radial velocities from the literature. The resulting absolute magnitudes are Mv = ± 0.59 + 0.25 for X Ari and Mv = 0.61 ± 0.35 for RR Lyr. The method is shown to be a very accurate way of determining radii, distances, and absolute magnitudes for RR Lyrae stars which compares very favorably to the variations of the Baade-Wesselink technique currently in use.  相似文献   

10.
Beers  T.C.  Rossi  S.  Norris  J.E.  Ryan  S.G.  Molaro  P.  Rebolo  R. 《Space Science Reviews》1998,84(1-2):139-144
Ongoing spectroscopy and photometry of stars selected in the HK objective-prism/interference-filter survey of Beers and colleagues has resulted in the identification of many hundreds of additional stars in the halo (and possibly the thick disk) of the Galaxy with abundances [Fe/H] -2.0. A new calibration of the technique for estimation of metal abundance based on a CaII K index as a function of broadband B - V color is applied to obtain metallicities for stars observed with the SSO 2.3m and INT 2.5m telescopes. This new data is combined with other samples of extremely metal-deficient stars (Ryan and Norris, 1991a; Beers et al., 1992; Carney et al., 1994) to form a large database of objects of low metallicity. The combined sample is examined and compared with expectations derived from a Simple Model of Galactic chemical evolution. There appears to be a statistically-significant deficit of stars more metal-weak than [Fe/H] = -3.0. An abundance of [Fe/H] -4.0 can be taken as the low-metallicity limit for presently-observable stars in the Galaxy.  相似文献   

11.
Counts of hot and luminous stars in a number of associations in the Galaxy and Magellanic Clouds enable one to directly investigate the numbers and types of massive stars. There seems to be little, if any, dependence of the slope of the Intial Mass Function, or theM upper on the initial composition of the stars. Indirect estimates of numbers of massive stars in various more distant environments are reviewed and discussed within a framework of acalibration of the methods using the stellar census of 30 Doradus. Very young starbursts, containing large numbers of massive stars, seem to be composed of smaller sub-units similar or somewhat larger than that object. These units might be newly born globular clusters.  相似文献   

12.
Primitive meteorites and interplanetary dust particles contain small quantities of dust grains with highly anomalous isotopic compositions. These grains formed in the winds of evolved stars and in the ejecta of stellar explosions, i.e., they represent a sample of circumstellar grains that can be analyzed with high precision in the laboratory. Such studies have provided a wealth of information on stellar evolution and nucleosynthesis, Galactic chemical evolution, grain growth in stellar environments, interstellar chemistry, and the inventory of stars that contributed dust to the Solar System. Among the identified circumstellar grains in primitive solar system matter are diamond, graphite, silicon carbide, silicon nitride, oxides, and silicates. Circumstellar grains have also been found in cometary matter. To date the available information on circumstellar grains in comets is limited, but extended studies of matter returned by the Stardust mission may help to overcome the existing gaps.  相似文献   

13.
The ultraviolet spectral images of thousands of faint stars, up to the 13th mag., in the wavelength region of 2000–5000 Å are obtained by means of the space astrophysical observatory Orion-2 aboard the spaceship Soyuz-13. These spectrograms were designed generally for an investigation of the continuous spectra of the stars in ultraviolet. The processing and measurement of part of the material available confirm the expectations for the solution of a large number of problems concerning the physics of stars and stellar atmospheres. Some of the results obtained are included in the present review. Particularly, the observed distribution of continuous energy in the ultraviolet of normal hot stars is in line, according to Orion-2 data, with theoretical prediction; the existence of a new type of high temperature (> 20000K) and low absolute luminosity stars is noticed; the blocking effect of the ultraviolet absorption lines expected for the A-type stars is confirmed; a number of empirical regularities concerning the behaviour of the ultraviolet doublet of ionized magnesium, 2800 Mg ii, in the stellar spectra are derived; the chromosphere in cold stars is detected; the role of a multiplet of ionized titanium, 3080 Ti ii, in stellar spectra is revealed; probably an abnormal silicon-rich stellar envelope around a Be-type star is discovered; a new method for the spectral classification of the stars by their ultraviolet spectral images is developed; a range of interesting facts relating to the structure of the ultraviolet spectra of middle type stars (F-K) come to the fore; an exceptional ultraviolet spectrogram for the planetary nebula II 2149 and its nuclei is obtained; the blocking effect of emission lines in the spectrum of the B-type emission and normal O-type stars has been detected; a remarkably faint (12itm.6) and high temperature star (No. 1) of strange spectral structure has been discovered.  相似文献   

14.
Duncan  D. 《Space Science Reviews》1998,84(1-2):167-174

An overview of the discussions of the working group on Low-Z stars is presented. Key questions addressed include how the abundances of lithium observed in these stars should be compared to that produced in the Big Bang. Evidence for and against a small star-to-star variation in Li abundances is reviewed, and whether such a variation, if real, necessarily indicates that stellar depletion has occurred, necessitating correction to the value compared to primordial nucleosynthesis calculations. A second key question concerns how and where the light elements are produced. Taken together, their abundance ratios strongly suggest that in low-Z stars the light elements other than 7Li are produced by cosmic ray spallation. The most recent evidence suggests that a minority of this spallation happens in the general interstellar medium, and that a larger fraction might happen in the immediate vicinity of Supernovae, possibly producing observable star-to-star variation. Finally, the question of the overall metallicity of the Galaxy is discussed. How homogeneous in space and time is its evolution? Can we identify subsystems or individual stars which indicate a pregalactic contribution to the galactic metallicity?

  相似文献   

15.
Conclusions My aim in this presentation has been to begin the confrontation between models for soft X-ray emission from low-luminosity galactic X-ray sources and currently available data. I have focussed principally on disk population stars, irrespective of spectral type, luminosity class, and age; and have used predictions of source temperatures and variability to distinguish between the various models. Although much remains to be done, I believe it is already possible to state that the X-ray emission characteristics of late and early spectral types, and young and old stars share many similarities, and that an economical explanation is that we are seeing the manifestations of solar coronal surface activity modulated by the stellar parameters which govern stellar magnetic activity (for example, rotation). In some cases (such as for OB stars), a proper theory accounting for the heating of such coronal plasma does not yet exist, but I am confident that the theorists will be up to this challenge.  相似文献   

16.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

17.
Observations indicating the presence of stellar chromospheres, that is hot envelopes around stars are summarized. Undisputed indicators (called type I) for hot stellar envelopes are spectral lines of highly ionized atoms, Fe ii emission lines and flares in late type stars and the presence of the He i10830 Å line. Whether indicators (called type II) like emission cores in the Ca ii H and K and Mg ii h and k lines or mass loss signify the presence of stellar chromospheres is still somewhat debated, although the discussion points in favour of the usefulness of these indicators. The combined evidence to date shows that all non degenerate type stars have chromospheres except possibly the A stars. There are however theoretical reasons for expecting chromospheres in A stars. Empirical chromosphere models for a rapidly growing sample of stars have recently been constructed on the basis of Ca ii and Mg ii line observations. A discussion of possible heating mechanisms is given and the relative importance of these mechanisms is evaluated. For the low and middle chromosphere the short period acoustic heating mechanism seems to be the dominant process although there are still uncertainties. Both steady state and time dependent theoretical models of stellar chromospheres, based on the short period acoustic heating theory, are discussed, and predictions of these models are compared with results from empirical models. This relatively favourable comparison shows that the explanation of the Wilson-Bappu effect might be at hand.  相似文献   

18.
Vauclair  S. 《Space Science Reviews》1998,84(1-2):265-271
The process of element segregation in stars (also called "microscopic diffusion") has to be introduced in all computations of stellar structure to obtain consistent models. Although recognized by the pioneers of stellar physics, this process has long been forgotten, except for white dwarfs and for the so-called "chemically peculiar stars". More recently helioseismology has given evidence that this process occurs in the Sun, and leads to helium and heavier element depletion by about 20 percent. Some macroscopic motions (mild mixing) must also occur below the convection zone in order to account for the lithium depletion. These motions do not prevent the segregation : they only slightly smooth the abundance gradients. These results are presented here and the connexion with the 3He abundance is discussed. The importance of these processes for Pop II stars is also developped.  相似文献   

19.
The B[e] stars are early type stars with hydrogen emission lines, forbidden [FeII] and [OI] emission lines, and with an IR excess due to circumstellar dust. These properties may occur in stars of quite different evolutionary stages. In fact, the group of B[e] stars is very inhomogeneous, and contains pre-main sequence stars, supergiants with disks, compact planetary nebulae, symbiotic stars, and a group of stars with unclear evolutionary phase. The book gives the proceedings of a workshop in Paris in 1997 in which the properties and evolutionary phases of the B[e] stars are discussed. It contains chapters on: (1) the definition of B[e] stars, (2) distances, kinematics and the distribution in our Galaxy, (3) spectroscopy, (4) infrared properties, (5) photometry, polarimetry and variability, (6) models for winds and disks, (7) evolutionary stages, (8) revised classification of B[e] stars. The book ends with an object list of all B[e] stars. The book is very useful for students and researchers of hot star winds and gives nice overviews of the observations and theories and remaining puzzles of these strange objects with winds and outflowing dust-forming disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Primas  F. 《Space Science Reviews》1998,84(1-2):161-166
The boron 2500 spectral region has been observed with the Goddard High Resolution Spectrograph (GHRS) of the Hubble Space Telescope (HST) in a new set of metal-poor stars and analyzed by spectrum synthesis technique, adopting the most recent model atmospheres. By taking into account the Li and Be abundances available from the literature for this same set of objects, the resulting patterns of their light elements abundances cannot be easily justified with the currently known stellar structure scenarios. The finding of real differences in the B content between stars with very similar stellar characteristics suggest that also production effects, rather than depletion and/or mixing only, should be taken into account as a possible and valuable explanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号