共查询到20条相似文献,搜索用时 15 毫秒
1.
InSight Mars Lander Robotics Instrument Deployment System 总被引:1,自引:0,他引:1
A. Trebi-Ollennu Won Kim Khaled Ali Omair Khan Cristina Sorice Philip Bailey Jeffrey Umland Robert Bonitz Constance Ciarleglio Jennifer Knight Nicolas Haddad Kerry Klein Scott Nowak Daniel Klein Nicholas Onufer Kenneth Glazebrook Brad Kobeissi Enrique Baez Felix Sarkissian Menooa Badalian Hallie Abarca Robert G. Deen Jeng Yen Steven Myint Justin Maki Ali Pourangi Jonathan Grinblat Brian Bone Noah Warner Jaime Singer Joan Ervin Justin Lin 《Space Science Reviews》2018,214(5):93
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity. 相似文献
2.
Matthew A. Siegler Suzanne E. Smrekar Matthias Grott Sylvain Piqueux Nils Mueller Jean-Pierre Williams Ana-Catalina Plesa Tilman Spohn 《Space Science Reviews》2017,211(1-4):259-275
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe. 相似文献
3.
N. Murdoch D. Alazard B. Knapmeyer-Endrun N. A. Teanby R. Myhill 《Space Science Reviews》2018,214(8):117
We present an updated model for estimating the lander mechanical noise on the InSight seismometer SEIS, taking into account the flexible modes of the InSight lander. This new flexible mode model uses the Satellite Dynamics Toolbox to compute the direct and the inverse dynamic model of a satellite composed of a main body fitted with one or several dynamic appendages. Through a detailed study of the sensitivity of our results to key environment parameters we find that the frequencies of the six dominant lander resonant modes increase logarithmically with increasing ground stiffness. On the other hand, the wind strength and the incoming wind angle modify only the signal amplitude but not the frequencies of the resonances. For the baseline parameters chosen for this study, the lander mechanical noise on the SEIS instrument is not expected to exceed the instrument total noise requirements. However, in the case that the lander mechanical noise is observable in the seismic data acquired by SEIS, this may provide a complementary method for studying the ground and wind properties on Mars. 相似文献
4.
J.-P. Bibring H. Rosenbauer H. Boehnhardt S. Ulamec J. Biele S. Espinasse B. Feuerbacher P. Gaudon P. Hemmerich P. Kletzkine D. Moura R. Mugnuolo G. Nietner B. Pätz R. Roll H. Scheuerle K. Szegö K. Wittmann 《Space Science Reviews》2007,128(1-4):205-220
The paper describes the Rosetta Lander named Philae and introduces its complement of scientific instruments. Philae was launched
aboard the European Space Agency Rosetta spacecraft on 02 March 2004 and is expected to land and operate on the nucleus of
67P/Churyumov-Gerasimenko at a distance of about 3 AU from the Sun. Its overall mass is ~98 kg (plus the support systems remaining
on the Orbiter), including its scientific payload of ~27 kg. It will operate autonomously, using the Rosetta Orbiter as a
communication relay to Earth. The scientific goals of its experiments focus on elemental, isotopic, molecular and mineralogical
composition of the cometary material, the characterization of physical properties of the surface and subsurface material,
the large-scale structure and the magnetic and plasma environment of the nucleus. In particular, surface and sub-surface samples
will be acquired and sequentially analyzed by a suite of instruments. Measurements will be performed primarily during descent
and along the first five days following touch-down. Philae is designed to also operate on a long time-scale, to monitor the
evolution of the nucleus properties. Philae is a very integrated project at system, science and management levels, provided
by an international consortium. The Philae experiments have the potential of providing unique scientific outcomes, complementing
by in situ ground truth the Rosetta Orbiter investigations.
Philae team members are listed in the acknowledgements 相似文献
5.
N. H. Warner M. P. Golombek J. Sweeney R. Fergason R. Kirk C. Schwartz 《Space Science Reviews》2017,211(1-4):147-190
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock. 相似文献
6.
Tilman Spohn Karsten Seiferlin Axel Hagermann Jörg Knollenberg Andrew J. Ball Marek Banaszkiewicz Johannes Benkhoff Stanislaw Gadomski Wojciech Gregorczyk Jerzy Grygorczuk Marek Hlond Günter Kargl Ekkehard Kührt Norbert Kömle Jacek Krasowski Wojciech Marczewski John C. Zarnecki 《Space Science Reviews》2007,128(1-4):339-362
MUPUS, the multi purpose sensor package onboard the Rosetta lander Philae, will measure the energy balance and the physical parameters in the near-surface layers – up to about 30 cm depth- of the
nucleus of Rosetta’s target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as
the comet approaches the sun. Among the parameters studied are the density, the porosity, cohesion, the thermal diffusivity
and conductivity, and temperature. The data should increase our knowledge of how comets work, and how the coma gases form.
The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties
will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data
will indicate how pristine cometary matter sampled and analysed by other experiments on Philae really is. 相似文献
7.
Pierre Delage Foivos Karakostas Amine Dhemaied Malik Belmokhtar Philippe Lognonné Matt Golombek Emmanuel De Laure Ken Hurst Jean-Claude Dupla Sharon Kedar Yu Jun Cui Bruce Banerdt 《Space Science Reviews》2017,211(1-4):191-213
In support of the InSight mission in which two instruments (the SEIS seismometer and the \(\mbox{HP}^{3}\) heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the \(\sim1.3~\mbox{Mg/m}^{3}\) density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing. 相似文献
8.
9.
10.
Stefano Mottola Gabriele Arnold Hans-Georg Grothues Ralf Jaumann Harald Michaelis Gerhard Neukum Jean-Pierre Bibring 《Space Science Reviews》2007,128(1-4):241-255
ROLIS (Rosetta Lander Imaging System) is one of the two imaging systems carried by Rosetta’s Lander Philae, successfully launched
to comet 67P/ Churyumov-Gerasimenko in March 2004. Consisting of a highly-miniaturized CCD camera, ROLIS will operate as a descent imager, acquiring imagery
of the landing site with increasing spatial resolution. After touchdown ROLIS will focus at an object distance of 30 cm, taking
pictures of the comet’s surface below the Lander. Multispectral imaging is achieved through an illumination device consisting
of four arrays of monochromatic light emitting diodes working in the 470, 530, 640 and 870 nm spectral bands. The drill sample
sites, as well as the Alpha X-Ray Spectrometer (APXS) target locations will be imaged to provide context for the measurements
performed by the in situ analyzers. After the drilling operation, the borehole will be inspected to study its morphology and to search for stratification.
Taking advantage of the Lander’s rotation capability, stereo image pairs will be acquired, which will facilitate the mapping
and identification of surface structures. 相似文献
11.
William M. Folkner Véronique Dehant Sébastien Le Maistre Marie Yseboodt Attilio Rivoldini Tim Van Hoolst Sami W. Asmar Matthew P. Golombek 《Space Science Reviews》2018,214(5):100
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment. 相似文献
12.
R. L. Fergason R. L. Kirk G. Cushing D. M. Galuszka M. P. Golombek T. M. Hare E. Howington-Kraus D. M. Kipp B. L. Redding 《Space Science Reviews》2017,211(1-4):109-133
To evaluate the topography of the surface within the InSight candidate landing ellipses, we generated Digital Terrain Models (DTMs) at lander scales and those appropriate for entry, descent, and landing simulations, along with orthoimages of both images in each stereopair, and adirectional slope images. These products were used to assess the distribution of slopes for each candidate ellipse and terrain type in the landing site region, paying particular attention to how these slopes impact InSight landing and engineering safety, and results are reported here. Overall, this region has extremely low slopes at 1-meter baseline scales and meets the safety constraints of the InSight lander. The majority of the landing ellipse has a mean slope at 1-meter baselines of 3.2°. In addition, a mosaic of HRSC, CTX, and HiRISE DTMs within the final landing ellipse (ellipse 9) was generated to support entry, descent, and landing simulations and evaluations. Several methods were tested to generate this mosaic and the NASA Ames Stereo Pipeline program dem_mosaic produced the best results. For the HRSC-CTX-HiRISE DTM mosaic, more than 99 % of the mosaic has slopes less than 15°, and the introduction of artificially high slopes along image seams was minimized. 相似文献
13.
Stevanović J. Teanby N. A. Wookey J. Selby N. Daubar I. J. Vaubaillon J. Garcia R. 《Space Science Reviews》2017,211(1-4):525-545
Space Science Reviews - In 2018, NASA will launch InSight, a single-station suite of geophysical instruments, designed to characterise the martian interior. We investigate the seismo-acoustic... 相似文献
14.
David Mimoun Naomi Murdoch Philippe Lognonné Kenneth Hurst William T. Pike Jane Hurley Tanguy Nébut William B. Banerdt SEIS Team 《Space Science Reviews》2017,211(1-4):383-428
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model. 相似文献
15.
Fulchignoni M. Ferri F. Angrilli F. Bar-Nun A. Barucci M.A. Bianchini G. Borucki W. Coradini M. Coustenis A. Falkner P. Flamini E. Grard R. Hamelin M. Harri A.M. Leppelmeier G.W. Lopez-Moreno J.J. McDonnell J.A.M. McKay C.P. Neubauer F.H. Pedersen A. Picardi G. Pirronello V. Rodrigo R. Schwingenschuh K. Seiff A. Svedhem H. Vanzani V. Zarnecki J. 《Space Science Reviews》2002,104(1-4):395-431
The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical
quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors
are devoted to the study of Titan's atmospheric structure and electric properties, and to provide information on its surface,
whether solid or liquid.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
16.
月面着陆器是实现载人探月任务的重要组成部分,从任务规划和着陆器参数两个方面对早期美国阿波罗计划中的月面着陆器( LM)、苏联N1-L3登月计划中的月面着陆器( L3登月系统)以及最近美国星座计划中的月面着陆器( Altair)的相关情况进行了分析,并从任务需求、月面环境和研究经费及基础设施方面对LM与Altair月面着陆器进行详细比较,通过比较分析总结出新一代载人月面着陆器将沿着提高乘员运送能力、扩大到达范围、延长航天员生活时间及功能模块化的方向发展,并提出研制新一代月面着陆器应着重解决着陆器推进、结构、着陆障碍检测及缓冲以及月尘防护等关键技术。 相似文献
17.
We analyzed UVCS/SOHO data and compared the H I Lyα (121.6 nm) and O VI (103.2 nm, 103.7 nm) emission in the polar and equatorial coronal holes. We found that the emission lines have similar characteristics in these two types of coronal holes. Both types show evidence for superradially diverging boundaries. The latitudinal distribution of the O VI line ratio may indicate that the equatorial coronal hole has O+5 outflow velocities lower than in the polar coronal holes. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
K. J. Seidensticker D. Möhlmann I. Apathy W. Schmidt K. Thiel W. Arnold H.-H. Fischer M. Kretschmer D. Madlener A. Péter R. Trautner S. Schieke 《Space Science Reviews》2007,128(1-4):301-337
SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land
on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical
properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface.
Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity
to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results
from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change
of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission. 相似文献
19.
Mihail P. Petkov Steven M. Jones Gerald E. Voecks Kenneth J. Hurst Olivier Grosjean Delphine Faye Guillaume Rioland Cecily M. Sunday Emma M. Bradford William N. Warner Jerami M. Mennella Ned W. Ferraro Manuel Gallegos David M. Soules Philippe Lognonné W. Bruce Banerdt Jeffrey W. Umland 《Space Science Reviews》2018,214(8):112
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission. 相似文献
20.
Clinton J. Giardini D. Böse M. Ceylan S. van Driel M. Euchner F. Garcia R. F. Kedar S. Khan A. Stähler S. C. Banerdt B. Lognonne P. Beucler E. Daubar I. Drilleau M. Golombek M. Kawamura T. Knapmeyer M. Knapmeyer-Endrun B. Mimoun D. Mocquet A. Panning M. Perrin C. Teanby N. A. 《Space Science Reviews》2018,214(8):1-51
Space Science Reviews - In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter’s... 相似文献