首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Astronautica》2007,60(4-7):571-587
This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars.In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats.The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility.Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space.Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of the Design process including all suggested design and configuration options.  相似文献   

2.
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.  相似文献   

3.
With the prospect of long duration space missions in Earth orbit or to Mars, there is a need for adequate information on the physiological adaptations that will occur. One consequence of prolonged exposure to microgravity is muscle atrophy (loss of muscle mass). After a long duration space flight, muscle atrophy along with skeletal calcium loss would affect the capacity of astronauts to re-adapt to gravity on return to Earth. Of importance are any countermeasures which can attenuate the adaptive responses to microgravity. Experimentation is difficult in space with small subject numbers and mission constraints. Prolonged bed rest using healthy volunteers is used as an Earth-based model to simulate the muscle atrophy which occurs in the microgravity environment.  相似文献   

4.
The human exploration of multiple deep space destinations (e.g. Cis-Lunar, NEAs), in view of the final challenge of sending astronauts to Mars, represents a current and consistent study domain especially in terms of its possible scenarios and mission architectures assessments, as proved by the numerous on-going activities about this topic and moreover by the global exploration roadmap. After exploring and analysing different possible solutions to identify the most flexible path, a detailed characterisation of several Design Reference Missions (DRMs) represents a necessity in order to evaluate the feasibility and affordability of deep space exploration missions, specifically in terms of enabling technological capabilities.The study presented in this paper was aimed at defining an evolutionary scenario for deep space exploration in the next 30 years with the final goal of sending astronauts on the surface of Mars by the end of 2030 decade. Different destinations were considered as targets to build the human exploration scenario, with particular attention to Earth–Moon Lagrangian points, NEA and Moon. For all the destinations selected as part of the exploration scenario, the assessment and characterisation of the relative Design Reference Missions were performed. Specifically they were defined in terms of strategies, architectures and mission elements. All the analyses were based on a pure technical approach with the objective of evaluating the feasibility of a long term strategy for capabilities achievement and technological development to enable future space exploration.This paper describes the process that was followed within the study, focusing on the adopted methodology, and reports the major obtained results, in terms of scenario and mission analysis.  相似文献   

5.
Roadmap to a human Mars mission   总被引:1,自引:0,他引:1  
We propose a new roadmap for the preparation of the first human mission to Mars. This proposal is based on the work of ISECG and several recent recommendations on human Mars mission architectures. A table is proposed to compare the possible benefits of different preparatory missions. Particular attention is paid to the possibility of qualifying important systems thanks to a heavy Mars sample return mission. It is shown that this mission is mandatory for the qualification of Mars aerocapture at scale-1, EDL systems at scale 1 and Mars ascent. Moreover, it is a good opportunity to test many other systems, such as the heavy launcher and the transportation systems for the trips beyond LEO. These tests were not mentioned in the last ISECG report. This strategy is facilitated in the case of the simplified Mars mission scenarios that have recently been presented because it is suggested that relatively small vehicles with small crew sizes are used in order to optimize the payload mass fraction of the landing vehicles and to avoid the LEO assembly. An important finding of the study is that a human mission to the surface of the Moon is not required for the qualification of the systems of a human mission to Mars. Since affordability is a key criterion, two important missions are proposed in the roadmap. The first is a heavy Mars sample return mission and the second is a manned mission to a high Earth orbit or eventually to the vicinity of the Moon. It is shown that both missions are complementary and sufficient to qualify all the critical systems of the Mars mission.  相似文献   

6.
We compare a variety of mission scenarios to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. We examine direct, semi-direct, stop-over, semi-cycler, and cycler architectures, and we include electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems in our technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. Many different combinations of technologies and architectures are applied to the same Mars mission to determine which combinations provide the greatest potential reduction in the injected mass to LEO. We approximate the technology readiness level of a mission to rank development risk, but omit development cost and time calculations in our assessment. It is found that Earth–Mars semi-cyclers and cyclers require the least injected mass to LEO of any architecture and that the discovery of accessible water on Mars has the most dramatic effect on the evolution of Mars exploration.  相似文献   

7.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

8.
Manzey D 《Acta Astronautica》2004,55(3-9):781-790
Human exploratory missions to Mars represent the most exciting future vision of human space flight. With respect to the distance to travel and mission duration, these missions will provide unique psychological challenges that do not compare to any other endeavor humans ever have attempted. The present paper presents outcomes of two recent projects sponsored by the European Space Agency--Humex and Reglisse--where these challenges and risks have been analyzed in some detail, and where concepts for future research have been developed. This presentation involves three steps. At first, it will be shown that our current psychological knowledge derived from orbital spaceflight and analogue environments is not sufficient to assess the specific risks of mission into outer space. Secondly, new psychological challenges of missions to Mars will be identified with respect to three different areas: (1) individual adaptation and performance, (2) crew interactions, and (3) concept and methods of psychological countermeasures. Finally, different options and issues of preparatory psychological research will be discussed.  相似文献   

9.
Pletser et al. performed a seismic-refraction survey on Devon Island with the goal of assessing the feasibility of astronauts carrying out such operations on Mars to detect subsurface water. We demonstrate that the seismic analysis is fundamentally flawed. The survey performed in this test will likely bear little resemblance to future crewed geophysical surface operations, and better methods exist to detect subsurface water.  相似文献   

10.
侯黎强  李恒年  黄福铭  谭炜 《宇航学报》2011,32(11):2312-2318
提出了一种火星再入探测器的半解析法一体化模型,为未来火星探测器的初步设计提供包括弹道、气动参数、防热系统在内的设计依据。在任务初步设计阶段,由于涉及多个学科,火星大气与地球大气模型差异很大,需要考虑的因素很多,因此需要一个半解析的,能够实时进行弹道、气动参数和防热层温度分布计算的设计工具。该工具应该包括气动外形、弹道、防热为一体的设计模型,且能满足计算负担要求。基于此,提出了一种普遍适应的火星探测器外形定义方程,并对其中的一种特殊情况进行了解析公式的推导。在合理假设的前提下,给出了计算防热层内部温度分布的半解析计算公式,并以MER\|B (Mars Exploration Rover)探测器为例进行了弹道和气动受热仿真。计算结果表明,该一体化计算模型的仿真计算落点与实际落点很接近,达到了火星探测器初步设计阶段一体化的计算要求。
  相似文献   

11.
To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.  相似文献   

12.
Akos Kereszturi 《Acta Astronautica》2011,68(11-12):1686-1701
Based on field experience at Analogue stations MDRS and FMARS and additional theoretical computations, motorized field work traverses were planned for various surface feature types on Mars, with emphasis on their horizontal dimension, maximal slope angle and cumulative vertical surface undulation or roughness. The aim was to explore the possibilities and characteristics of field work for different terrain types. Those terrain types are reviewed in the present study that have already been analyzed based on remote sensing data, and that are described in the scientific literature.Dunes, gullies, slope streaks, cross sections of valley networks and of lava channels might be analyzed during only one extra vehicular activity (EVA, e.g., pedestrian and vehicular field work) with the objective of a first in-situ exploration along an optimized traverse, in order to provide the most valuable scientific information on their general characteristics and origin. Smaller tectonic faults, lava flows, lobate debris aprons and outcrops of polar layered deposits can be analyzed only by several EVAs together. Analysis of large landslides, calderas and interior layered deposits produce even more difficulties on Mars, and require specialized technology. In cases where several EVAs are necessary for detailed analysis along the best traverse, mobile pressurized vehicles (with pressurized cabin for astronauts without spacesuits) or other methods would be necessary.Many of the geologic structures that have been analyzed only with remotely sensed data could not be surveyed during one field campaign, and in some cases because of high slope angle and large cumulative topographic undulation, their in-situ exploration could not be accomplished with the technological capabilities available, and in-situ analysis requires more advanced technology than long distance rovers can provide now. Hence, the prior location of important sites and the usage of robotic help will be of high importance.  相似文献   

13.
《Acta Astronautica》2007,60(4-7):512-517
The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.  相似文献   

14.
《Space Policy》1988,4(1):12-18
Who are the best partners for a US manned mission to Mars? Arguments have been made for a joint US-Soviet manned mission which would improve relations between the superpowers and prevent the weaponization of space. However, from the viewpoint of the US space advocate, the issue is which is the most expeditious way to get humans to Mars. Let's go to Mars, the author argues, but with allies and friends rather than the USA's primary competitor on Earth.  相似文献   

15.
文章以"火星科学实验室"为例,对火星进入、下降和着陆(EDL)技术的新进展进行了分析和总结。首先,简要介绍了"火星科学实验室"任务需求和遇到的技术挑战;然后,详细说明了相应的对策以及具体技术方案,并针对当前所遇到的问题,列举了一些可能的解决方法;最后,对"火星科学实验室"发展的新技术、新方法进行了总结。  相似文献   

16.
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also.  相似文献   

17.
With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.  相似文献   

18.
载人航天器出舱活动期间氧气分压控制是保证航天员安全和完成出舱任务的重要因素.文章通过对出舱过程中引起氧气分压变化的因素分析,进行了出舱活动低压情况下的氧气分压安全限的试验验证研究,建立了出舱活动氧气分压变化趋势仿真模型,并在此基础上确定了出舱活动阶段舱压和氧气分压的调控方案  相似文献   

19.
文章以火星探测任务为背景,介绍了两种用于实时地形安全性评估的基于多敏感器的地形信息融合分析技术。这些技术综合考虑了影响着陆器安全着陆的多种地形特性信息,如地形粗糙度、坡度等,并且计算简单、处理速度快,能够满足火星着陆实时地形安全分析的要求。  相似文献   

20.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号