首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
空间微波系统中微放电现象   总被引:5,自引:0,他引:5  
对微放电理论的研究历史进行了回顾。分析了微放电的发生条件和机理 ,讨论了影响微放电效应的各种因素 ,提出了各种增高微放电阈值电平的有效措施 ,以防止微放电效应发生 ,保护系统正常工作。给出了设计微放电部件的一般步骤 ,并对设计中需要注意的问题进行了论述  相似文献   

2.
材料表面的二次电子发射会触发和维持空间高功率射频器件的共振雪崩放电现象,这种现象又被称为微放电效应。微放电效应是限制空间大功率微波部件应用的关键问题之一。从微放电作用的机理出发,首先介绍了两种微放电类型(单表面与双表面)的基本物理机理;然后总结了当前主流的微放电抑制方法并给出各自应用于空间大功率微波部件时的限制。针对空间大功率微波部件微放电抑制的特殊问题,综述了国内近5年来在表面处理法抑制微放电领域的研究成果并预测了微放电抑制技术的发展趋势。  相似文献   

3.
微放电效应部件设计研究   总被引:2,自引:0,他引:2  
分析了影响微放电效应阈值电平的几种因素。对微放电效应部件设计的一般步骤和方法进行了论述 ,给出了具体的设计实例 ,并对微放电效应部件设计中需要注意的问题进行了说明  相似文献   

4.
星载大功率复杂微波部件微放电效应数值模拟   总被引:1,自引:0,他引:1  
随着航天器有效载荷技术向高功率、小型化持续发展,复杂结构微波部件微放电数值模拟与阈值分析成为影响微放电分析的基础瓶颈问题。基于电磁时域有限差分计算方法与粒子模拟技术,结合二次电子发射模拟,提出了微放电电磁粒子联合仿真方法,数值模型中考虑了真实电子间的库仑力以及电子运动产生的电荷和电流变化对电磁场的影响,解决了复杂结构微波部件微放电三维数值模拟技术难题。实现了在统一的三维空间网格与时间步进行电磁场值演变计算、电子运动状态变化推进计算与二次电子产额与能量分布计算,基于得到的二次电子数目随时间变化趋势实现了微放电阈值预判,通过微放电电子随时间演化获得了微放电过程具体物理图像及放电位置,并与实际器件微放电实验进行了对比验证。结果表明,所提出的三维电磁粒子数值模拟方法可对大功率微波部件微放电效应的物理过程与具体放电位置进行三维描述,预测的阈值与微放电实验测量值吻合良好,误差小于1.2dB,验证了该方法的有效性与准确性,对于深入研究微放电效应微观物理机制、提高大功率微波部件微放电设计与分析水平具有重要意义。  相似文献   

5.
随着微放电效应研究的不断深入,低能电子影响在微放电过程中越来越不可忽视。当前常用的微放电模型在处理低能电子问题上具有一定的局限性,为了精确模拟这一过程,在深入研究二次电子和背散射电子发射理论的基础上,分别针对材料表面条件不同引起的二次电子发射系数不确定性、低能电子的背散射系数以及电子入射角等问题进行了分析和讨论,并在此基础上建立了一个二次电子发射模型,最后通过数值计算讨论了模型的正确性和适用范围。这一模型同时考虑材料表面条件参数、低能电子的背散射系数以及入射角等因素影响,能够兼容较低能量电子的二次发射,提升微放电数值模拟的精确度和适用性,为微放电数值模拟的发展起到推进作用。  相似文献   

6.
航天器微波部件低气压放电效应是威胁航天器电子设备安全运行的一种特殊效应,而部件材料表面吸附气体脱附后为低气压放电提供了必要的条件。首先对比了微放电与低气压放电的区别,阐述了低气压放电破坏效应的产生根源。通过理论分析与计算,对比了热效应和电子轰击效应对不同键能吸附气体的脱附效率。结果发现,热致脱附主要造成低键能物理吸附气体的解吸附,电子轰击效应可造成高键能的化学吸附气体的解吸附。阐明了由二次电子倍增引起的电子诱导解吸附过程是星载微波部件内低气压环境的主要形成原因。最后讨论了通过部件材料表面处理及提高二次电子倍增阈值的低气压放电效应抑制方法。  相似文献   

7.
介绍星用镀铝KAPTON、TEFLON薄膜充放电特性地面模拟试验研究的试验装置、试验方法和试验结果分析;给出了充电电位分布、最大放电电流、放电电荷、放电脉宽与样品面积的关系;简单介绍放电频谱特性、小放电脉冲、掩模上放电脉冲以及放电对样品表面损伤的形貌分析。研究结果主要为卫星充放电效应的防护设计和试验验证提供实验依据  相似文献   

8.
为克服传统微放电阈值预测方法建模粗糙、精度低的缺点,提高阀值预测精度和效率,研究了基于时域有限差分的精确微放电阀值预测算法。基于时域有限差分算法和粒子追踪算法,通过时空网格自洽互耦实现复杂结构微波器件微放电阈值准确计算。其中,共形和并行算法是提高微放电仿真精度和效率的关键。文章基于空间蛙跳策略实现了基于时域有限差分的微放电仿真算法,利用算法分析了典型微波器件的微放电阈值,仿真与实验结果吻合良好,误差小于0.3dB;同时,并行效率最高可达83%,验证了算法的准确性和高效性。  相似文献   

9.
微放电是空间微波部件设计所必须考虑的失效效应之一,随着空间宽带多载波模式的广泛采用,多载波条件下微波部件微放电问题引起广泛关注。针对周期内多载波微放电等效功率计算所采用传统经验公式的不足,提出了一种基于修正差分进化算法的确定周期内多载波微放电等效功率的全局优化方法。该方法通过对多载波合成信号功率特性进行分析,推导获得了 20个电子渡越时间内信号能量的表达式,采用二次插值法进行局部搜索,采用修正差分进化算法进行全局优化,从而高效、准确获得全局最优解。以幅度相等、频率间隔相等的多载波信号为例,进行了等效功率的确定,与经验公式的预测结果相当,验证了所提出方法的有效性;同时,对幅度不同、频率间隔不等的多载波信号进行了处理,获得了能够指导微波部件微放电设计的最坏状态及其等效功率。所提出方法不仅适用于幅度不同、频率间隔不等的多载波信号情况,并且能够提供微放电最坏状态时的相位分布,为多载波微放电实验验证提供相位输入。所提出方法相比传统的基于经验公式的方法具有明显优势,为空间宽带多载波工作微波部件微放电设计提供有效依据,在卫星转发器多载波微放电分析及设计中具有价值。  相似文献   

10.
正微放电效应是在真空条件下,电子在外加射频场的加速下,在两金属表面间或介质表面上激发的二次电子发射与倍增效应。航天器有效载荷系统中微波部件一旦发生微放电,造成射频输出功率下降,微波传输系统驻波比增大,反射功率增加,信道阻塞,严重时物理损坏微波部件,所在通道有效载荷寿命缩短,甚至导致击穿使得航天器有效载荷失效。  相似文献   

11.
现有关于介质微波部件微放电的相关研究多从谐振条件及出射电子产额方面出发分析微放电发生原因及其抑制方法,而很少分析航天器表面电位对于微放电发生的影响。文章对碰撞电子与介质表面相互作用后二次电子发射特性进行综合分析;重点研究了不同介质表面初始电位情况下,恒定能量的电子束流持续轰击介质表面时介质表面电位及电子束流碰撞能量的变化趋势;并对稳定后的电子束流碰撞能量和介质表面电位进行了理论计算,计算结果表明系统平衡状态时的表面电位受初始电子能量及第二临界能量影响有明显改变。此外,文章探究了单一能量及连续能量入射介质表面时表面带电对于二次电子发射的影响,研究表明:带有电位φ的表面会使临界能量发生偏移量-eφ的相对偏移;对于连续能量的入射电子束,介质表面带电会很大程度上改变入射电子束的能量范围,从而影响微放电发生的风险。  相似文献   

12.
针对微放电过程中的电子累积效应,探索二次电子累积对微波部件传输特性的影响,提出二次电子累积“等效介质”的理论模型,通过将电子累积等效为“特殊介质”,从介质的角度探索电子累积对传输特性的影响,推导得到不同电子累积密度所形成不同“等效介质”的相对介电常数。仿真和计算结果表明,微放电过程中,电子累积密度从0增长至1016/m3数量级时,传输特性基本不发生变化; 但是当电子累积密度达到1017/m3数量级时,阻抗变换器的通带内回波损耗恶化了15dB;随着电子累积密度继续增大,“等效介质”对电磁波的反射迅速增强,微波部件的传输特性急剧恶化;在电子累积密度达到4×1017/m3时,电磁波在阻抗变换器中的传输处于完全截止状态。为了进一步探讨导致传输特性恶化的深层原因,发现在电子累积密度达到4×1017/m3时,在2.5~5GHz的频率范围内,电子累积形成“等效介质”的相对介电常数呈现为负值,电磁波传输截止,“等效介质”表现出单负介电常数超材料的特性,即导致阻抗变换器传输特性恶化的原因是单负介质材料的形成。研究有益于更深入地认识微放电形成过程中的深层物理机理及其对宏观电性能的影响,为寻求更加有效的抑制方法提供理论依据。  相似文献   

13.
三维规则形貌影响下的二次电子发射特性研究   总被引:1,自引:0,他引:1  
通过人工加工出特定的表面形貌来调控材料的二次电子发射特性已在诸多领域得到应用。规则表面形貌易于揭示抑制规律和影响机制对二次电子发射特性的影响,同时采用光刻、等离子刻蚀等工艺可以较好地实现特定设计的规则形貌,因此,在抑制微放电的研究初期或原理性试验验证过程中多采用定制的规则表面形貌。基于提出的电子与表面形貌相互作用的多代模型,以三维圆柱孔为例,采用蒙特卡罗方法系统研究了三维规则表面形貌的深宽比、占空比等参量影响二次电子产额、二次电子能谱以及出射角分布的规律。研究发现:规则形貌的深宽比越大,能谱展宽越强烈,形貌对出射角的选择性越强,二次电子产额的抑制效果越好,但该抑制效果存在饱和效应。在形貌不发生交叠时,增加占空比,可有效降低二次电子产额,由于圆柱孔出射电子占比较少,二次电子能谱与出射角分布接近于平面。所获得的三维规则表面形貌的二次电子发射特性对于全面评估其对微放电效应的影响提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号