首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The goal of Working Group 1 was to discuss constraints on solar wind models. The topics for discussion, outlined by Eckart Marsch in his introduction, were: (1) what heats the corona, (2) what is the role of waves, (3) what determines the solar wind mass flux, (4) can stationary, multi-fluid models describe the fast and slow solar wind, or (5) do we need time dependent fluid models, kinetic models, and/or MHD models to describe solar wind acceleration. The discussion in the working group focused on observations of "temperatures" in the corona, mainly in coronal holes, and whether the observations of line broadening should be interpreted as thermal broadening or wave broadening. Observations of the coronal electron density and the flow speed in coronal holes were also discussed. There was only one contribution on observations of the distant solar wind, but we can place firm constraints on the solar wind particle fluxes and asymptotic flow speeds from observations with Ulysses and other spacecraft. Theoretical work on multi-fluid models, higher-order moment fluid models, and MHD models of the solar wind were also presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Kinetic models are necessary to describe the physical processes associated with non-Maxwellian velocity distribution functions (VDFs) of electrons or ions in the solar corona and wind. It is shown that pitch-angle scattering of electrons in the solar wind needs to be considered in kinetic solar wind models. Coulomb collisions are not efficient enough to provide this scattering, but resonant interaction with whistler waves is. A solar wind model for undisturbed fast wind is presented, and the influence of scattering on flare electron propagation is investigated. Furthermore, it is found that resonant interaction of electrons with whistler waves is capable of producing suprathermal tails of electron distributions even under quiet conditions without flare activity.  相似文献   

3.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   

4.
There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
This paper contains a summary of the topics treated in the working group on abundance variations in the solar atmosphere and in the solar wind. The FIP bias (overabundance of particles with low First Ionization Potentials over photospheric abundances) in coronal holes and coronal hole associated solar wind amounts to values between 1 and 2. The FIP bias in the slow solar wind is typically a factor 4, consistent with optical observations in streamers. In order to distinguish between different theoretical models which make an attempt to explain the FIP bias, some observable parameters must be provided. Unfortunately, many models are deficient in this respect. In addition to FIP fractionation, gravitational settling of heavy elements has been found in the core of long lived streamers. The so-called electron 'freeze in' temperatures derived from in situ observed ionization states of minor ions in the fast wind are significantly higher than the electron temperatures derived from diagnostic line ratios observed in polar coronal holes. The distinction between conditions in plumes and interplume lanes needs to be further investigated. The 'freeze in' temperatures for the slow solar wind are consistent with the electron temperatures derived for streamers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The consequences of the interaction between the solar wind and the local interstellar medium for the wind region enclosed by the heliospheric shock are reviewed. After identifying the principal mechanisms to influence the dynamics of the solar wind, an approach allowing the simultaneous incorporation of neutral atoms, pick-up ions, cosmic rays and energetic electrons into a multifluid model of the expanding wind plasma is outlined. The effects of these particle species are discussed in detail, with special emphasis on the electron component which behaves more like a quasi-static hot gas rather than an expanding fluid. This electron gas is effectively trapped within a three-dimensional trough of a circumsolar electric potential whose outer fringes are possibly determined by the density distribution of anomalous cosmic rays. The electrons are proven to be a globally structered component of great importance for the solar wind momentum flow contributing to a triggering of the solar wind dynamics by asymmetric interstellar boundary conditions. Finally, the consequences for the relative motion of the Sun and the local interstellar medium as well as for the solar system as a whole are described.  相似文献   

7.
Coronal holes have been identified as source regions of the fast solar wind, and MHD wave activity has been detected in coronal holes by remote sensing, and in situ in fast solar wind streams. I review some of the most suggestive wave observations, and discuss the theoretical aspects of MHD wave heating and solar wind acceleration in coronal holes. I review the results of single fluid 2.5D MHD, as well as multi-fluid 2.5D MHD models of waves in coronal holes, the heating, and the acceleration of the solar wind be these waves.  相似文献   

8.
9.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
11.
We present results from hybrid (particle ions, fluid electrons) simulations of the evolution of Alfvén waves close to the ion cyclotron frequency in the solar wind, which take into account the basic properties of the background solar wind flow, i.e., the spherical expansion and the consequent decrease in magnetic field and cyclotron frequency with increasing distance from the Sun. We follow the evolution of a plasma parcel in a frame of reference moving with the solar wind using a 1D expanding box hybrid model; use of the hybrid model yields a fully self-consistent treatment of the resonant cyclotron wave-particle interaction. This model is related to a previous MHD model (Velli et al. 1992), which allows the use of a simple Cartesian geometry with periodic boundary conditions. The use of stretched expanding coordinates in directions transverse to the mean radial solar wind flow naturally introduces an anisotropic damping effect on velocity and magnetic field. We present results for the case of a single circularly polarized Alfvén wave propagating radially outward. Initially, the wave is below the cyclotron frequency for both the alpha partcles and protons. As the wind expands, the wave frequency (as seen in the solar wind frame) decreases more slowly than the cyclotron frequencies and the wave comes into resonance. With only protons, heating occurs as the wave frequency approaches the proton cyclotron frequency. With both alphas and protons, the alphas, which come into resonance first, are observed to be preferentially heated and accelerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A survey of the present-day situation in gasdynamical models of solar wind interaction with the local interstellar medium is presented. A role of these models in interpreting a number of observed physical phenomena is investigated. Experimental data and possible observations are considered from the viewpoint of their interpretation on the basis of theoretical models. Our attention is concentrated on the main limitations of the gasdynamical models, in particular, two-shocks model developed by Baranovet al. (1981, 1982).  相似文献   

13.
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore, one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances. In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value.  相似文献   

14.
While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations.However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled “Slow solar wind sources and acceleration mechanisms in the corona” held in Bern (Switzerland) in March 2014 and 2015.  相似文献   

15.
Cole  David G. 《Space Science Reviews》2003,107(1-2):295-302
Terrestrial technology is now, and increasingly, sensitive to space weather. Most space weather is caused by solar storms and the resulting changes to the Earth's radiation environment and the magnetosphere. The Sun as the driver of space weather is under intense observation but remains to be adequately modelled. Recent spacecraft measurements are greatly improving models of solar activity, the interaction of the solar wind with the magnetosphere, and models of the radiation belts. In-situ data updates the basic magnetospheric model to provide specific details of high-energy electron flux at satellite orbits. Shock wave effects at the magnetopause can also be coarsely predicted. However, the specific geomagnetic effects at ground level depend on the calculation of magnetic and electric fields and further improvements are needed. New work on physical models is showing promise of raising geomagnetic and ionospheric predictability above the synoptic climatological level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Determining how the heliospheric magnetic field and plasma connect to the Sun’s corona and photosphere is, perhaps, the central problem in solar and heliospheric physics. For much of the heliosphere, this connection appears to be well understood. It is now generally accepted that so-called coronal holes, which appear dark in X-rays and are predominantly unipolar at the photosphere, are the sources of quasi-steady wind that is generally fast, >500?km/s, but can sometimes be slow. However, the connection to the Sun of the slow, non-steady wind is far from understood and remains a major mystery. We review the existing theories for the sources of the non-steady wind and demonstrate that they have difficulty accounting for both the observed composition of the wind and its large angular extent. A?new theory is described in which this wind originates from the continuous opening and closing of narrow open field corridors in the corona, which give rise to a web of separatrices (the S-Web) in the heliosphere. Note that in this theory the corona—heliosphere connection is intrinsically dynamic, at least for this type of wind. Support for the S-Web model is derived from MHD solutions for the corona and wind during the time of the August 1, 2008 eclipse. Additionally, we perform fully dynamic numerical simulations of the corona and heliosphere in order to test the S-Web model as well as the interchange model proposed by Fisk and co-workers. We discuss the implications of our simulations for the competing theories and for understanding the corona—heliosphere connection, in general.  相似文献   

17.
On the Slow Solar Wind   总被引:1,自引:0,他引:1  
Fisk  L.A.  Schwadron  N.A.  Zurbuchen  T.H. 《Space Science Reviews》1998,86(1-4):51-60
A theory for the origin of the slow solar wind is described. Recent papers have demonstrated that magnetic flux moves across coronal holes as a result of the interplay between the differential rotation of the photosphere and the non-radial expansion of the solar wind in more rigidly rotating coronal holes. This flux will be deposited at low latitudes and should reconnect with closed magnetic loops, thereby releasing material from the loops to form the slow solar wind. It is pointed out that this mechanism provides a natural explanation for the charge states of elements observed in the slow solar wind, and for the presence of the First-Ionization Potential, or FIP, effect in the slow wind and its absence in fast wind. Comments are also provided on the role that the ACE mission should have in understanding the slow solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Williams  D. J. 《Space Science Reviews》1997,80(1-2):369-389
The relative importance of the two known substantive sources of magnetospheric particles, the solar wind and the ionosphere, remains largely undetermined throughout much of the magnetosphere. For the specific case of the geomagnetic tail however, the development of a remarkable family of models incorporating the kinetics of charged particle motion, has opened the possibility of determining relative strengths and geometries of the solar wind and ionospheric sources that are responsible for observed tail particle populations. Once source strengths and geometries are determined, transport paths and mechanisms can be identified, in turn leading to a determination of acceleration/heating mechanisms and locations. Loss processes then determine the quasi-equilibrium particle distributions in the tail. A quantitative understanding of the tail and its dynamics requires extensive, detailed comparisons of data and model results. Data obtained over the past two decades have led to the result that for energies at least above ~ 1 eV, both sources are well mixed throughout the tail and that the solar wind is the dominant source. New, unique data sets have provided the initial data comparisons with the models and show great promise in deconvolving source strengths and geometries and ultimately understanding the formation and behavior of the tail.  相似文献   

19.
20.
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question. Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier elements don't settle out completely. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号