首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An approach is presented to the control of an uncertain nonlinear flexible robot arm (PUMA-type) with three rotational joints. The third link is assumed to be elastic. A torquer control law, which is a function of the trajectory error, is derived for controlling the joint angles. The knowledge of the system dynamics is not required for the derivation of the controller. This controller includes a reference model to generate command joint angle trajectories, and a dynamic system in the feedback path which requires only joint angle and rate for feedback. The torquer controller asymptotically decouples the elastic dynamics into two subsystems, representing the transverse vibration of the elastic link in two orthogonal planes. For the damping of the elastic vibration, a force control law using modal velocity feedback is synthesized. Simulation results are presented to show that the combination of the torque and force control law accomplishes reference joint angle trajectory tracking and elastic mode stabilization despite the uncertainty in the system  相似文献   

2.
Robust Nonlinear Attitude Control of Flexible Spacecraft   总被引:1,自引:0,他引:1  
This paper presents an approach to large-angle rotationalmaneuvers of a spacecraft-beam-tip body configuration based onnonlinear invertibility and linear feedback stabilization. A controllaw Ud is derived for the decoupled control of attitude angles, lateralelastic deflections, slopes due to bending and angular deflection dueto torsion at the tip of the beam using torquers and force actuators.For the stabilization of the elastic modes, a linear feedback controllaw us is obtained based on a linearized model augmented with aservocompensator. Simulation results are presented to show thatlarge slewing and elastic mode stabilization can be accomplished.  相似文献   

3.
The question of attitude control and elastic mode stabilization of a spacecraft (orbiter) with beam-tip-mass-type payloads is considered. A three-axis moment control law is derived to control the attitude of the spacecraft. The derivation of the control moments acting on the spacecraft does not require any information on the system dynamics. The control law includes a reference model and a dynamic compensator in the feedback path. For damping out the elastic motion excited by the slewing maneuver, an elastic mode stabilizer is designed. The stabilization is achieved by modal velocity feedback using force and torque actuators located at the payload end of the elastic beam. Collocated actuators and sensors provide robust stabilization. Simulation results are presented to show that rotational maneuvers and vibration stabilization can be accomplished in the closed-loop systems despite the presence of model uncertainty and disturbance torque in the system  相似文献   

4.
The questions of rotational maneuver and vibration stabilization of the NASA Spacecraft Control Laboratory Experiment (SCOLE) system is considered. The mathematical model of the SCOLE system includes the rigid body dynamics as well as the elastic dynamics representing transverse and torsional deformations of the elastic beam connecting the orbiter and end body (reflector). For the rotational maneuver, a new control law (orbiter control law) is derived using an orbiter input torque vector. Detumbling and reorientation maneuvers of the SCOLE system are accomplished using this control law; however, this excites the elastic modes of the beam. The orbiter control law asymptotically linearizes the flexible dynamics. Using the linearized model, a linear feedback control law is designed for vibration suppression. An observer is designed for estimating the state variables using sensor outputs which are also used for the synthesis of the control law. Simulation results are presented to show that in the closed-loop system detumbling and reorientation maneuvers can be accomplished and the effect of control and observation spillover is insignificant  相似文献   

5.
Adaptive control and stabilization of elastic spacecraft   总被引:1,自引:0,他引:1  
This work treats the question of large angle rotational maneuver and stabilization of an elastic spacecraft (spacecraft-beam-tip body configuration). It is assumed that the parameters of the system are completely unknown. An adaptive control law is derived for the rotational maneuver of the spacecraft. Using the adaptive controller, asymptotically decoupled control of the pitch angle of the space vehicle is accomplished, however this maneuver causes elastic deformation of the beam connecting the orbiter and tip body. For the stabilization of the zero dynamics (flexible dynamics), a stabilizer is designed using elastic mode velocity feedback. In the closed-loop system including the adaptive controller and the stabilizer, reference pitch angle trajectory tracking and vibration suppression are accomplished. Simulation results are presented to show the maneuver capability of the control system  相似文献   

6.
用柔性机械臂连杆末端的弹性变形以及变形角度来表示空间机器人柔性臂的弹性运动变量,克服了用无穷维振动模态变量来表示弹性变形给系统运动学建模带来的困难;基于广义雅可比矩阵的思想,建立了柔性臂空间机器人"双广义雅可比矩阵"形式的运动学模型,该运动学模型描述了柔性臂弹性变形对空间机器人的运动影响;以运动学方程为基础,设计了柔性臂空间机器人的惯性空间内连续轨迹规划算法。仿真表明,规划的机械臂关节运动规律可以补偿柔性连杆振动给机械臂末端位置带来的影响,使机械臂末端位置准确沿着期望的轨迹运动。  相似文献   

7.
利用假设模态法建立了柔性连杆机械臂的逆动力学方程,提出了一种并行于常规开环逆动力学控制的混合模糊控制方法对其进行末端轨迹跟踪。设计的控制器由两部分组成,一部分为根据结构的逆动力学以及机械臂末端所需跟踪的轨迹计算出控制力;另一部分为通过末端位置的实测与给定轨迹的偏差,利用一个辅助模糊控制对控制量进行调整,构成输出反馈部分。通过数字仿真,并与常规模糊控制结果的比较,表明借助于结构逆动力学,可以降低模糊控制器对知识库的需求,获得较好的控制稳态性能。  相似文献   

8.
This paper presents a static output feedback controller (SOFC) for aeroelastic control of a cantilevered rectangular wing in low subsonic flow. For this purpose, an optimal formulation of this control method is developed, and a solution method is proposed for the related matrix equation. This optimal solution is obtained by solving combined Lyapunov and Riccati equations. At first these equations are transformed into a set of nonlinear algebraic equations and then are solved with iterative Newton–Raphson?s method. This solution method is applicable to the full state feedback case. The controller is designed to extend flutter boundary and suppress limit cycle oscillation (LCO) of a low aspect ratio rectangular nonlinear structural wing. This structural nonlinearity is given by Von Karman plate theory. Both full and reduced order aerodynamic models are examined based on the modified vortex lattice theory. Results show combination of SOFC with reduced order aerodynamic model would be an effective choice for aeroelastic stabilization, and this controller has a very comparable result with linear quadratic regulator (LQR).  相似文献   

9.
Parameterization and adaptive control of space robot systems   总被引:2,自引:0,他引:2  
In space application, robot system are subject to unknown or unmodeled dynamics, for example, in the tasks of transporting an unknown payload or catching an unmodeled moving object. We discuss the parameterization problem in dynamic structure and adaptive control of a space robot system with an attitude-controlled base to which the robot is attached. We first derive the system kinematic and dynamic equations based on Lagrangian dynamics and the linear momentum conservation law. Based on the dynamic model developed, we discuss the problem of linear parameterization in term of dynamic parameters, and find that in joint space, the dynamics can be linearized by a set of combined dynamic parameters; however, in inertial space linear parameterization is impossible in general. Then we propose an adaptive control scheme in joint space, and present a simulation study to demonstrate its effectiveness and computational procedure. Because most takes are specified in inertial space instead of joint space, we discuss the issues associated to adaptive control in inertial space and identify two potential problem: unavailability of joint trajectory because the mapping from inertial space trajectory is dynamic-dependent and subject to uncertainty; and nonlinear parameterization in inertial space. We approach the problem by making use of the proposed joint space adaptive controller and updating the joint trajectory by the estimated dynamic parameters and given trajectory in inertial space  相似文献   

10.
杨蔷薇 《飞行力学》2005,23(1):47-49
将动态逆理论、神经网络和自适应控制相结合应用于非线性飞行控制系统设计中,通过动态逆控制律将非线性耦合系统转换为线性解耦系统,采用具有在线学习能力的神经网络来补偿反馈线性化中存在的逆误差,最后利用李亚普诺夫稳定性理论推导了在线网络权值的自适应调整规则。仿真结果表明,这种控制结构具有良好的跟踪能力和极强的鲁棒性。  相似文献   

11.
杨恩泉  高金源 《飞行力学》2007,25(2):30-33,38
对无人机机动飞行轨迹跟踪系统的内环姿态控制律和外环轨迹跟踪控制律两部分分别进行了设计。利用非线性动态逆方法设计了内环姿态控制律。外环轨迹跟踪控制律采用逆动力学前馈加模糊反馈的控制结构,提高系统对飞行条件及期望轨迹剧烈变化时的跟踪精度。仿真结果表明,所设计的系统能够控制无人机精确跟踪指定的机动轨迹,且相对于固定增益系统具有更好的鲁棒性。  相似文献   

12.
研究了欠驱动船舶的镇定问题。首先,通过恰当的坐标变换将整个动态系统转换成级联结构的非线性系统;其次,利用backstepping使得最后要镇定的问题变成一个3阶链式无漂移系统的镇定;再次,设计了光滑时变的反馈控制律,使系统全局渐近稳定到期望的平衡点。文章的设计方法是系统的,采用的技术都是现有的一些方法,主要是Lyapunov分析、级联方法、backstepping和坐标变换。仿真结果表明了该方法的有效性。  相似文献   

13.
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space  相似文献   

14.
This paper treats the question of attitude maneuver control and elastic mode stabilization of a flexible spacecraft based on adaptive sliding mode theory and active vibration control technique using piezoelectric materials. More precisely, a modified positive position feedback (PPF) scheme is developed to design the PPF compensator gains in a more systematical way to stabilize the vibration modes in the inner loop, in which a cost function is introduced to be minimized by the feedback gains subject to the stability criterion at the same time. Based on adaptive sliding mode control theory, a discontinuous attitude control law is derived to achieve the desired position of the spacecraft, taking explicitly into account the mismatched perturbation and actuator constraints. In the attitude control law, an adaptive mechanism is also embedded such that the unknown upper bound of perturbation is automatically adapted. Once the controlled attitude control system reaches the switching hyperplane, the state variables can be driven into a small bounded region. An additional attractive feature of the attitude control method is that the structure of the controller is independent of the elastic mode dynamics of the spacecraft, since in practice the measurement of flexible modes is not easy or feasible. The proposed control strategy has been implemented on a flexible spacecraft. Both analytical and numerical results are presented to show the theoretical and practical merit of this approach.  相似文献   

15.
The results of research in a process of a probe rocket berthing to an asteroid are presented. Control laws were obtained as solutions of three problems, namely berthing considering transient processes in a rocket engine, fastest berthing with regard to fuel consumption and berthing in a scheduled time considering fuel consumption. A program trajectory obtained at solving of the first problem is suitable for mathematical modeling of berthing with the feedback control law and stabilization of angular motion. The solutions of the problems are reduced to simple formulas for controlling parameters calculation in the corresponding structures of control laws. The results can be applied in designing promising space vehicles intended for berthing to other space objects.  相似文献   

16.
The question of large angle pitch attitude maneuver of satellites using solar radiation pressure is considered. For pitch axis maneuver, two highly reflective control surfaces are used to generate radiation moment. Based on dynamic feedback linearization, a nonlinear control law is derived for large pitch attitude control. In the closed-loop system, the response characteristics of the pitch angle are governed by a fourth-order linear differential equation. Robustness of control system is obtained by the integral error feedback. Simulation results are presented to show that in the closed-loop system, attitude control of the satellite is accomplished in spite of the parameter uncertainty in the system  相似文献   

17.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.  相似文献   

18.
Geometric Approach in Solving Inverse Kinematics of PUMA Robots   总被引:1,自引:0,他引:1  
A geometric approach for deriving a consistent joint solution of a six-point PUMA1 robot is presented. The approach calls for the definition of various possible arm configurations based on the link coordinate systems and human arm geometry. These arm configurations are then expressed in an exact mathematical way to allow the construction of arm configuration indicators and their corresponding decision equations. The arm configuration indicators are prespecified by a user for finding the joint solution. These indicators enable one to find a solution from the possible four solutions for the first three joints, a solution from the possible two solutions for the last three joints. The solution is calculated in two stages. First a position vector pointing from the shoulder to the wrist is derived. This is used to derive the solution of the first three joints by looking at the projection of the position vector onto the xi-1-yi-1(i = 1,2,3) plane. The last three joints are solved using the calculated joint solution from the first three joints, the orientation matrices, and the projection of the link coordinate frames onto the xi-1-yi-1 (i = 4,5,6) plane. From the geometry, one can easily find the arm solution consistently. A computer simulation study conducted on a VAX-11/780 computer demonstrated the validity of the arm solution.  相似文献   

19.
秦超英  戴冠中 《航空学报》1994,15(9):1130-1133
讨论广义离散随机线性系统在二次型性能指标下的最优控制问题。导出的最优控制律由系统输出和部分状态的线性反馈构成,这不仅降低了滤波的黎卡提方程的阶次,显著地减少了计算量,而且在工程中也是可实现的。  相似文献   

20.
基于碰撞检测的自适应阻抗控制机械臂系统(英文)   总被引:2,自引:0,他引:2  
针对柔性关节机械臂,本文阐述了机械臂能够像人手一样安全操作的方法。3种方法相结合,以便机械臂能够柔顺的接触操作对象并控制接触力在预设定范围内。首先,提出采用虚拟分解法的笛卡尔阻抗控制用来实现机械臂在笛卡尔空间的柔顺控制。其次,引入自适应关节动态补偿器使得机械臂能够实施更为精确的控制。最后,设计了基于笛卡尔力反馈的实时路径规划,从而使机械臂能够检测碰撞并控制接触力。基于碰撞检测的自适应阻抗控制器能够简化其在机械臂上的实施,保持机械臂对环境的友好操作,并且严格满足系统的全局稳定性。实验在4自由度的卫星在轨自维护机械臂平台得以验证。碰撞检测实验和轨迹跟踪实验结果证明了所提出方法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号