首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.  相似文献   

2.
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.  相似文献   

3.
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).  相似文献   

4.
Neurobiological problems in long-term deep space flights.   总被引:1,自引:0,他引:1  
Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight.  相似文献   

5.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

6.
Previous space experiments suggest a high value for the RBE of cosmic radiation. A possible explanation could be a change in cell radiosensitivity due to a combined effect of radiation and other factors related to the space environment and to the space flight. Results of the EXOBLOC II experiment support this assumption. On earth, vibrations or accelerations applied before or after irradiation can change the responses to radiation. Microgravity could be the main factor affecting the radiosensitivity and DNA repair but this hypothesis must be confirmed by additional experiments.  相似文献   

7.
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification.  相似文献   

8.
Results presented from recent space flight BION 9 show biological effects of different LET-classes of HZE-particles in different target regions of the seed (meristem and the whole embryo) of Arabidopsis thaliana (L.) Heyhn. HZE-one hit events and non-hit events, i.e. only hit by the low-LET background radiation, and their combined effects on the biological damage endpoint lethality are distinguished. This procedure is opening the opportunity of an approach to comparative studies of the biological effects induced by cosmic HZE-particles of different LET-ranges interacting in the complex cosmic radiation spectrum and with other space flight conditions.  相似文献   

9.
Animal studies in space or analogous environments have suggested that there may be problems in the reproductive sphere; such factors might limit mankind's ability to live and work for extended periods of time in microgravity or on non-terrestrial planetary surfaces. A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, we have identified several potential problem areas regarding human reproductive physiology and functioning in the space environment. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.  相似文献   

10.
The standards currently recommended for use in space travel were perhaps the first risk derived recommendations for dose limitations developed for quasi-occupational circumstances. They were based on data, considerations, and philosophy existing prior to 1970 and considered carcinogenesis primarily. In the intervening twelve years, not only has radiation risk information improved markedly but considerations relating to risk in general have become better known. The earlier recommendations have been examined with respect to changes in risk estimation and it is noted that the same philosophy used today, would probably lead to different dose limitations. However, other philosophies might be used; in particular a comparison of risks between terrestrial occupational radiation circumstances and also with fatal accident rates in a range of industries can be made and might be used in a modified philosophy with respect to risks from carcinogenesis. Developments have also taken place with respect to the knowledge of the biological effects of HZE particles but whether these effects are limiting as compared with radiation induced carcinogenesis is not yet clear. More studies on the effects of HZE particles, now becoming available, are needed. It is recommended that an in depth reexamination be undertaken of the biological effectiveness of space radiations and the philosophy of dose limitations in comparison with other risks.  相似文献   

11.
A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events.  相似文献   

12.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   

13.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

14.
This paper presents a new concept of radiation hazard assessment for spacecraft crew members during long term space missions on the basis of a generalized dosimetric function. This new dosimetric function enables a complicated nature of space radiation exposure to be reduced to the conditions of a standard irradiation. It can be obtained on the basis of mean-tissue equivalent dose values calculated for each space radiation source and transmission coefficients describing the influence of the complex spatial and temporal distribution of the absorbed dose in the cosmonaut's body on the radiobiological effects. The combination of cosmic ionizing radiation with other non-radiation nature factors in flight can also be accounted for. In terms of the generalized dose, it is possible to assess the nature and extent of lowering a crew working capacity, as well as radiation risk, both during a flight and post flight period.  相似文献   

15.
The Mars mission differs from near-Earth manned space flights by radiation environment and duration. The importance of effective using the weight of the spacecraft increases greatly because all the necessary things for the mission must be included in its starting weight. For this reason the development of optimal systems of radiation safety ensuring (RSES) acquires especial importance. It is the result of sharp change of radiation environment in the interplanetary space as compared to the one in the near-Earth orbits and significant increase of the interplanetary flight duration. The demand of a harder limitation of unfavorable factors effects should lead to radiation safety (RS) standards hardening. The main principles of ensuring the RS of the Mars mission (optimizing, radiation risk, ALARA) and the conception of RSES, developed on the basis of the described approach and the experience obtained during orbital flights are presented in the report. The problems that can impede the ensuring of the crew members' RS are also given here.  相似文献   

16.
日地L1点是太阳观测任务的理想观测点,对于中国后续太阳观测任务具有重要意义,因此在嫦娥五号的拓展任务阶段设计并实施了中国首次日地L1点探测任务,通过在轨飞行验证了日地L1点转移轨道、环绕轨道设计的正确性,对日地L1点的测控链路环境、太阳辐照环境、三体动力学环境、空间辐射环境等飞行环境进行了探测和验证。轨道飞行和各项环境探测的结果与设计模型的预示结果之间比对一致性较好,通过在轨飞行数据验证了设计模型的正确性。各项试验获得了预期的技术成果,进一步丰富了嫦娥五号任务的成果产出,对中国后续深空探测任务和产品的设计具有重要借鉴意义。  相似文献   

17.
The number of human beings likely to spend time in space will increase as time goes on. While exposures vary according to missions, orbits, shielding, etc., an average space radiation fluence (ignoring solar flares, radiation belts and anomalous regions in space) in locations close to earth is about 10 rad/year with a quality factor of about 5.5. The potential effects of exposure to these fluences include both non-stochastic effects and stochastic effects (cancer and genetic damage). Non-stochastic effects, damage to the lens of the eye, bone marrow or gonads, can be avoided by keeping radiation limits below threshold values. Stochastic effects imply risk at all levels. The magnitude of these risks has been discussed in a number of reports by the UNSCEAR Committee and the BEIR Committee in the USA during 1970-1980. The uncertainties associated with these risks and information which has become available since the last BEIR report is discussed. In considering reasonable limits for exposure in space, acceptable levels for stochastic risks must be based on appropriate comparisons. In view of the limited term of duty of most space workers, a lifetime limit may be appropriate. This lifetime limit might be comparable in terms of risks with limits for radiation workers on the ground but received at a higher annual rate for a shorter time. These and other approaches are expected to be considered by an NCRP Committee currently examining the problem of space radiation hazards.  相似文献   

18.
The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.  相似文献   

19.
The radiation environment in space is a major concern for human spaceflight because of the adverse effects of high levels of radiation on astronauts’ health. Therefore, it is essential to perform radiation risk assessments already during the concept studies of a manned mission. Galactic Cosmic Rays (GCR) have been identified to be one of the primary sources of radiation exposure in space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号