共查询到20条相似文献,搜索用时 0 毫秒
1.
A white light coronagraph was launched into orbit aboard the space shuttle OV 103 (Discovery) on 7 April 1993. This device was one of two instruments included in the SPARTAN 201-1 payload, a completely autonomous sub-satellite deployed from the shuttle for a period of about 47 hours. The WLC system is an externally occulted coronagraph system which incorporates a rotating half-wave plate polarimeter, and the image data is used to infer the brightness, the polarized brightness and the degree of polarization of the white light emission from the solar corona. These data are in turn used to infer estimates of the K- and F-coronal brightnesses and density distributions. We shall present preliminary results of the electron density estimate in the coronal streamer and hole region and describe the methods employed.affiliated to USRA 相似文献
2.
A. A. Van Ballegooijen 《Space Science Reviews》1994,70(1-2):31-35
The formation of magnetic fine structures and associated electric currents is considered in the context of the coronal heating problem. The penetration of field-aligned electric currents into the lower atmosphere is discussed. It is argued that currents strong enough to heat the corona can persist only for short periods of time. The formation of thin current sheets is discussed. It is argued that photospheric magnetic structures (flux tubes) play an important role in the generation of coronal currents. 相似文献
3.
SOHO is a joint ESA/NASA mission to study the sun from its interior to, and including, the solar wind in interplanetary space. It is currently scheduled for launch in 1995. After launch SOHO with be operated from the Experiment Operations Facility (EOF) at Goddard Space Flight Center (GSFC). The EOF will consist of facilities for instrument commanding, data reception, data reduction and data analysis. In this paper the operations concepts including instrument ground commanding from the EOF and communications capabilities between the EOF and ground observatories and the public networks in general will be described. 相似文献
4.
Keith T. Strong 《Space Science Reviews》1994,70(1-2):133-142
We review recent observations by the Yohkoh-SXT in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (32 s full-disk and 2 s partial-frame images), high spatial resolution (2.5 arcsec pixels), high sensitivity (EM 1042 cm–3), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations, SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant increase in the ratio of the footpoint to loop-top diameter () are the exception, not the rule, implying the presence of widespread currents in the corona.All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly. Their coronal manifestation seems to be an extended arcade of loops overlying the filament. Reliable alignment of the ground-based data with the X-ray images make it possible to make a detailed intercomparison of the hot and cold plasma structures over extended periods. Hence we are able to follow the long-term evolution of these structures and see how they become destabilized and erupt. 相似文献
5.
The nonlinear evolution of a partially open coronal magnetic configuration is considered, assuming that corona responds to photospheric footpoint motions by small-scale reconnection events that produce a relaxed lower-energy state while conserving the global magnetic helicity of the system. The results of numerical calculations for such a relaxed equilibrium show an essential role of the amount of helicity injected to the closed-field region. If photospheric perturbations are incoherent (small-scale shearing with inefficient helicity injection), the relaxed state becomes close to an initial potential field. In this case reconnective relaxation does not result in a substantial global evolution, just providing heating of the corona (Vekstein et al, 1993). On the contrary, sufficient injection of the magnetic helicity can lead to a considerable restructuring of the coronal magnetic configuration, with possible change of its topology (formation of magnetic islands), and even catastrophic loss of equilibrium (Wolfson et al, 1994) 相似文献
6.
R. S. Steinolfson 《Space Science Reviews》1994,70(1-2):289-294
Numerical solutions of the time-dependent MHD equations are used to generate ambient coronal streamer structures in a corona characteristic of that near solar minimum. The streamers are then disrupted by slow photospheric shear motion at the base of magnetic field lines within the closed field region, which is currently believed to be responsible for producing at least some CMEs. In contrast to several other simulations of this phenomena, the polytropic index is maintained at a value of 5/3 through the addition of coronal heating. Observations are used as a guide in determining the thermodynamic structure and plasma beta in the ambient corona. For a shear speed of 2.5 km/sec, the streamer configuration evolves slowly for about 65 hours before erupting outward with the formation of a CME. The bright CME leading edge travels outward at a speed of about 240 km/sec, and the sheared field lines follow at a somewhat slower speed. A closed magnetic field region is ejected as the magnetic field lines that were opened by the CME reconnect and reform the streamer. 相似文献
7.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere
and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field
lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably
the cause of the observed extremely low values of the Ne/Mg abundance ratio.
In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential
magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary
of these dense structures must be considered.
In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting
components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations
and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
8.
A. N. Korzhavin V. M. Bogod V. N. Borovik G. B. Gelfreikh V. I. Makarov 《Space Science Reviews》1994,70(1-2):193-198
This paper presents a short summary of observations of coronal structures at microwaves using an instrument with high spatial resolution and good wavelength coverage. The comparison of the RATAN-600 data with optical observations of coronal loops in the green line and with the Very Large Array maps at 21 cm has shown that the loops represent only a small part of coronal matter, although their role may be of great importance in the physics of the solar corona. Prominence (filament) associated sources, especially peculiar ones, are also reviewed. 相似文献
9.
The coronal magnetic field in the northern polar coronal hole in 1986 is predicted on the basis of the photospheric magnetic field observations and the horizontal current-current sheet coronal model (Zhao and Hoeksema, 1993). The predicted magnetic field intensity is stronger near the center of the hole than near the edge. The calculated expansion factor for the entire hole does not match the expansion factor of any flux tube in the hole, suggesting that it would not be appropriate to use the expansion factor for entire hole to represent the divergence of the flux tube in analyzing the acceleration and heating of the plasma in coronal holes. 相似文献
10.
We investigate the possibility of observing the effects of magnetic reconnection inside a current sheet forming in a coronal streamer in the extended corona. In particular we study the possibility to observe with the UVCS of SOHO the excitation of the tearing instability in the current sheet. 相似文献
11.
Coronal astronomy is by now a fairly mature discipline, with a quarter century having gone by since the detection of the first
stellar X-ray coronal source (Capella), and having benefitted from a series of major orbiting observing facilities. Serveral
observational characteristics of coronal X-ray and EUV emission have been solidly established through extensive observations,
and are by now common, almost text-book, knowledge. At the same time the implications of coronal astronomy for broader astrophysical
questions (e.g.Galactic structure, stellar formation, stellar structure, etc.) have become appreciated. The interpretation
of stellar coronal properties is however still often open to debate, and will need qualitatively new observational data to
book further progress. In the present review we try to recapitulate our view on the status of the field at the beginning of
a new era, in which the high sensitivity and the high spectral resolution provided by Chandra and SMM-Newton will address
new questions which were not accessible before.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
12.
Mitchell A Berger 《Space Science Reviews》1994,68(1-4):3-14
Coronal loops are heated by the release of stored magnetic energy and by the dissipation of MHD waves. Both of these processes rely on the presence of internal structure in the loop. Tangled or sheared fields dissipate wave energy more efficiently than smooth fields. Also, a highly structured field contains a large reservoir of free magnetic energy which can be released in small reconnection events (microflares and nanoflares). The typical amount of internal structure in a loop depends on the balance between input at the photosphere and dissipation. This paper describes measures of magnetic structure, how these measures relate to the magnetic energy, and how photospheric motions affect the structure of a loop.The magnetic energy released during a reconnection event. can be estimated if one knows the equilibrium energy before and after the event. For a loop with highly tangled field lines, a direct solution of the equilibrium equations may be difficult. However, lower bounds can be placed on the energy of the equilibrium field, given a measure of the tangling known as the crossing number. These bounds lead to an estimate of the buildup of energy in a coronal loop caused by random photospheric motions. Parker's topological dissipation model can plausibly supply the 107 erg cm–2 s–1 needed to heat the active region corona. The heating rate can be greatly enhanced by fragmentation of flux tubes, for example by the breakup of photospheric footpoints and the formation of new footpoints. 相似文献
13.
New methods of local helioseismology and uninterrupted time series of solar oscillation data from the Solar and Heliospheric
Observatory (SOHO) have led to a major advance in our understanding of the structure and dynamics of active regions in the
subsurface layers. The initial results show that large active regions are formed by repeated magnetic flux emergence from
the deep interior, and that their roots are at least 50 Mm deep. The active regions change the temperature structure and flow
dynamics of the upper convection zone, forming large circulation cells of converging flows. The helioseismic observations
also indicate that the processes of magnetic energy release, flares and coronal mass ejections, might be associated with strong
(1–2 km/s) shearing flows, 4–6 Mm below the surface. 相似文献
14.
Franca Chiuderi Drago 《Space Science Reviews》1994,70(1-2):279-282
Different models of coronal streamers are used to calculate the radio brightness temperature at the wavelengths of observation of the Nançays Radioheliograph. Calculation are performed assuming the location of the streamer both on the disk and at the limb. Their comparison with observations show that a satisfactory agreement with a particular model can be found in the shape and in the relative enhacement of the streamer with respect to the quiet Sun, although the absolute values of the computed brightness temperatures are much higher than the observed ones. 相似文献
15.
Roger A. Kopp 《Space Science Reviews》1994,70(1-2):309-316
The working group on coronal streamers convened on the first day of the 2nd SOHO Workshop, which took place in Marciana Marina, Isola d'Elba, 27 September –1 October 1993. Recent progress in streamer observational techniques and theoretical modeling was reported. The contribution of streamers to the mass and energy supply for the solar wind was discussed. Moreover, the importance of thin electric current sheets for determining both the gross dynamical properties of streamers and the fine-scale filamentary structure within streamers, was strongly emphasized. Potential advances to our understanding of these areas of coronal physics that could be made by the contingent of instruments aboard SOHO were pointed out. 相似文献
16.
Parameters of expanding magnetic loops and arches and of mass flows generated by them in the corona have been computed in a 1D two-fluid approximation. Two possible trigger mechanisms of the coronal transients have been considered: (i) sudden increase of the background magnetic field strength, and (ii) heating and compression plasma inside these magnetic structures. We discuss the formation of shock waves and their dependence on dynamics and geometry of the magnetic structures. 相似文献
17.
Spicules are known as one of the most prevalent small-scale dynamic phenomena on the sun, which are likely to give considerable contribution to coronal heating and mass supply. We discuss a model of the spicules driven by a train of slow MHD shock waves propagating along a vertical expanding magnetic flux tube. The shocks are initiated due to compression of the tube by the increasing external pressure in the lower chromosphere. Downflow of spicular material depends on radiative cooling and other dissipative processes. 相似文献
18.
Giannina Poletto 《Space Science Reviews》1994,70(1-2):241-252
Streamers have been observed since far back in time, but our knowledge of their morphology and of their physical characteristics is still very limited. As a consequence, the present streamer picture is largely incomplete: because individual features are poorly known, their role in more general phenomena (like the evolution of the global corona or the solar wind mass and flow pattern) is also poorly known. In this presentation, the more relevant open problems in the understanding of streamers will be illustrated and it will be shown how new data acquired by SOHO may help us to reach a better understanding of these structures. 相似文献
19.
R. A. Leske R. A. Mewaldt C. M. S. Cohen A. C. Cummings E. C. Stone M. E. Wiedenbeck T. T. von Rosenvinge 《Space Science Reviews》2007,130(1-4):335-340
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value. 相似文献
20.
N. Vilmer G. Trottet C. Barat J. P. Dezalay R. Talon R. Sunyaev O. Terekhov A. Kuznetsov 《Space Science Reviews》1994,68(1-4):233-238
We report here on preliminary results of a systematic study of fast temporal fluctuations in impulsive and extended solar X-ray bursts observed by PHEBUS at energies around 100 keV. Subsecond timescales are quite common in the impulsive events and are not observed in extended ones. 相似文献