首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
航空发动机燃烧室湍流两相燃烧模型发展现状   总被引:2,自引:0,他引:2  
随着计算机、计算机辅助制造等技术的发展,数值模拟逐渐成为航空发动机设计手段之一。航空发动机燃烧室内是复杂的两相湍流燃烧过程,为了准确模拟这一过程,高精度两相湍流燃烧模型组成为航空发动机燃烧室设计师 必要的工具。本文从两相湍流数值模拟角度出发,对概率密度函数输运方程模型、火焰面模型和二阶矩模型这3种常用的燃烧模型的发展现状进行简要综述。  相似文献   

2.
可燃预混气点火过程研究是发动机燃烧领域最重要的课题之一。当前电火花强制点火广泛应用于各类发动机燃烧室中,其点火过程具有很强的瞬变性,从电火花产生到火焰完全形成的整个过程中,多种复杂因素联合影响点火火核的产生和发展。目前发动机高压、强湍流工况下的点火和火焰传播机理认识还不完善,亟需研究的科学问题是湍流和化学反应相互作用对点火和火焰传播的影响机制及其建模,包括湍流对点火的促进/抑制机制,湍流对火焰传播和火焰整体发展的影响规律,燃烧释热和火焰面不稳定性对湍流脉动速度(即火焰产生的湍流)的影响机制和对火焰传播速度的增强机制及由此导致的层流燃烧自加速转捩为湍流燃烧的理论,燃烧过程对标量通量输运(即反向或压力驱动输运)的影响机制。本文对强湍流下点火及火焰传播理论、实验和数值模拟方面的研究进展进行综述。  相似文献   

3.
航空发动机地面试验激光燃烧诊断技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究湍流燃烧基础问题和改进实际燃烧装置性能,基于激光的燃烧诊断技术已发展成为当前发动机湍流燃烧实验研究的主要测量工具。在已发展的激光燃烧诊断技术中,每种技术都有其局限性和适用范围,需要根据发动机模型燃烧室内部流场测量的要求和特点,选择合适的激光诊断技术。在温度测量中,相干反斯托克斯拉曼散射(CARS)技术主要用于单点温度测量,单脉冲CARS谱测温不确定度优于5%;高时空分辨温度场的测量需要采用双色平面激光诱导荧光(PLIF)测温方法,但其测温精度通常也会相应降低。在速度测量中,粒子成像测速(PIV)技术适用于低速流场速度的精细测量,羟基分子标记测速(HTV)技术适用于高温超声速甚至高超声速流场的速度测量,HTV测速不确定度可优于4%。在组分浓度测量中,主要采用自发拉曼散射(Spontaneous Raman Scattering,SRS)和PLIF技术进行主要组分和中间反应物的浓度分布测量。本文对航空发动机湍流燃烧温度、速度、组分浓度等参量的高时空分辨测量所涉及的激光燃烧诊断技术的基本原理、研究现状和发展趋势进行综述。  相似文献   

4.
火箭冲压组合发动机燃烧的若干基础问题研究   总被引:1,自引:0,他引:1       下载免费PDF全文
火箭冲压组合发动机包含多个工作模态,不同模态灵活组合的优势使其具有宽速域和广空域的工作特点,兼具加速和巡航的优点.火箭冲压组合发动机燃烧室中存在着亚声速、跨声速和超声速共存的流动结构,具有流动速度高、混合时间短、反应强度大、燃烧空间受限和波系结构复杂等特点.围绕火箭射流的强剪切性、燃烧模式的多样性和燃烧过程的动态性,分析了火箭冲压组合发动机的流动与燃烧特征,总结了面向发动机的高速湍流燃烧研究进展,研究了火箭冲压组合发动机中超声速反应混合层的生长特性、燃烧模式与空间释热分布和动态燃烧特性等问题.通过对碳氢燃料详细化学动力学机理的简化、校验,获得了分别适合于工程计算和细致燃烧机理研究的总包反应与框架机理.从火箭射流主导的反应混合层生长模型,宽范围、变来流工作中流动燃烧过程的不确定性和碳氢燃料动力学的简化与加速算法研究出发,提出了火箭冲压组合发动机基础研究中需要突破的问题,为认识发动机中多尺度燃烧机理、优化多模态燃烧组织提供参考.  相似文献   

5.
爆震、超级爆震等非正常燃烧现象是限制小型强化点燃式发动机热效率进一步提升的突出瓶颈。爆震或超级爆震发生时总会伴随着湍流火焰-冲击波的相互作用,因此对湍流火焰-冲击波的相互作用的研究是揭示其机理的关键。本文通过在可视化定容燃烧弹内安装孔板实现火焰过孔板加速并产生冲击波,并通过改变初始热力学条件和孔板的参数,来实现不同强度的湍流火焰和冲击波及其相互作用过程。基于该燃烧装置开展了火焰加速、冲击波的形成以及湍流火焰-冲击波相互作用导致不同燃烧模式的研究。根据燃烧室末端火焰传播和压力振荡情况,总结出5种燃烧模式,其中发生自燃的燃烧模式的压力振荡幅值均超过4.5MPa,是未发生自燃时的4~40倍。因此,湍流火焰-冲击波相互作用对燃烧压力振荡具有重要影响。  相似文献   

6.
火焰面模型在超燃冲压发动机数值模拟中的应用   总被引:6,自引:0,他引:6  
采用k-ω两方程湍流模型, 火焰面模型和质量加权平均的Navier-Stokes方程组解耦求解的方法,模拟了DLR氢燃料直连式超燃冲压发动机湍流燃烧流场,并与化学反应源项直接采用Arrhenius公式模拟及实验得到的结果进行对比,可以发现湍流脉动对化学反应的影响不能忽略.  相似文献   

7.
缸内受限条件下燃料与湍流的相互作用是燃料分层控制复合燃烧的关键问题。针对该问题,通过向缸内直喷高活性燃料二甲醚(Dimethyl ether,DME),形成高活性燃料浓度分层。基于光学可视化发动机实验平台,利用粒子图像测速(Particle Image Velocimetry,PIV)、Rayleigh散射、Mie散射以及高速摄影结合放热分析等手段对复合燃烧这一缸内受限空间下的流动及燃烧过程进行了观测,并通过三维计算流体力学(Computational Fluid Dynamics,CFD)仿真手段对观测到的现象进行解释。结果表明:缸内存在大范围逆时针涡流场,DME的蒸发和扩散过程受到流场的作用;在流场的作用下,缸内燃烧过程呈现DME集聚区域自燃-火焰传播-多点自燃放热特征。  相似文献   

8.
TDLAS 技术二次谐波法测量发动机温度   总被引:3,自引:0,他引:3       下载免费PDF全文
发动机燃烧流场温度的准确实时诊断对研究燃烧机理、提高燃烧效率及降低污染物排放等至关重要。分析了 TDLAS 技术二次谐波法免标定测温原理,实现了利用该技术对直联式超燃冲压发动机燃烧室内部温度的在线测量,并采用电控平移台扫描的方式实现了发动机出口与扩张段温度随空间变化的测量。结果表明该发动机燃烧特性主要有:(1)发动机出口与扩张段,氢气与乙烯两种燃料燃烧状况基本相同,且随着沿 y 轴自下往上扫描,温度逐渐升高;(2)发动机燃烧室内,氢气燃烧时的温度比乙烯燃烧时的温度要高和稳定;氢气燃烧过程温度基本处于2100K 左右,乙烯从点火至燃烧结束温度从2000K 左右逐渐降至1250K 左右。TDLAS 技术在复杂燃烧环境下的工程应用表明该技术具有抗干扰能力强、数据处理速度快的优点,可用于研制发动机燃烧场温度在线监测传感器。  相似文献   

9.
湍流火焰结构是表征湍流与火焰相互作用的组分、速度、温度等标量场信息,理解湍流与火焰相互作用规律,验证和发展湍流燃烧模型的实验基础。针对传统曲率PDF分布反映湍流火焰面褶皱结构失准问题,利用网络拓扑结构方法可以标记系统关键节点和特征结构,构建湍流火焰面的拓扑结构。本文标记了湍流火焰面上的关键褶皱结构,分析了湍流与火焰的作用规律,结果表明:低湍流强度下,湍流火焰面的关键褶皱结构由火焰自身不稳定性引起;当湍流强度增大,湍流火焰面的关键褶皱结构由湍流尺度决定。在本生灯湍流火焰中,火焰自身不稳定性引起的火焰褶皱与火焰发展距离有关。在本生灯火焰底部,火焰自身不稳定性不引起火焰面褶皱,随着火焰向下游发展,其对火焰面影响逐渐增大,火焰褶皱程度增加。  相似文献   

10.
在自主开发的软件平台上,采用基于URANS的方法计算航空发动机燃烧室的三维两相燃烧流动,考虑了液态燃油从液膜-液滴-燃气-燃烧的完整物理化学过程。其中,颗粒相采用LISA一次破碎模型,KH-RT二次破碎模型和标准的蒸发模型,湍流燃烧模型采用可以考虑非稳态燃烧特性的非稳态火焰面/反应进度变量方法,得到了航空发动机燃烧室中温度、组分浓度和燃油液滴的颗粒直径分布规律。同时,采用CARS光学手段测量燃烧室主燃区的温度分布,并将数值计算结果与光学试验测量值进行比较,数值计算结果和试验值吻合较好,数值计算误差小于7.3%。说明了本文的数值计算方法和UFPV方法在计算航空发动机燃烧室的两相燃烧流动时具有较高的精度。  相似文献   

11.
为了研究单一湍流场参数对预混湍流火焰结构的影响,以及拓宽湍流场的强度和尺度范围,发展了一套可变结构的预混湍流燃烧器。采用恒温型热线风速仪标定流场,得到了一系列湍流参数。流场标定结果表明:该燃烧器能显著拓宽湍流强度和尺度范围,并能利用不同几何结构产生多种可控流场,实现研究单一湍流参数对湍流燃烧速度和火焰结构影响的目的。选用有代表性的15种湍流孔板组合结构,利用OH-PLIF燃烧激光诊断技术,开展了湍流燃烧实验,结果表明:湍流强度的增大(1 < u'/SL,0 < 10)使得湍流火焰分区扩展到了薄层反应区,火焰面破碎程度明显增强,孤岛结构明显增多。高宏观雷诺数下,积分尺度的增长对湍流燃烧速度起抑制作用,可能存在临界宏观雷诺数Rec,能够表现流体惯性力占主导地位的程度,决定积分尺度对湍流燃烧速度的影响效果。积分尺度能量大,扰动能力强,故积分尺度越大,火焰体积越大;但过高的湍流强度会使火焰面褶皱更加剧烈,小尺度叠加在大尺度上的程度增强,最终也使火焰体积显著增大,掩盖了积分尺度对火焰体积的影响,说明积分尺度(表征大尺度)不如湍流强度(表征叠加小尺度的程度)对火焰放热率影响大。  相似文献   

12.
在自主开发的软件平台上,采用基于URANS的方法计算航空发动机燃烧室的三维两相燃烧流动,考虑了液态燃油从液膜-液滴-燃气-燃烧的完整物理化学过程。其中,颗粒相采用LISA一次破碎模型,KH-RT二次破碎模型和标准的蒸发模型,湍流燃烧模型采用可以考虑非稳态燃烧特性的非稳态火焰面/反应进度变量方法,得到了航空发动机燃烧室中温度、组分浓度和燃油液滴的颗粒直径分布规律。同时,采用CARS光学手段测量燃烧室主燃区的温度分布,并将数值计算结果与光学试验测量值进行比较,数值计算结果和试验值吻合较好,数值计算误差小于7.3%。说明了本文的数值计算方法和UFPV方法在计算航空发动机燃烧室的两相燃烧流动时具有较高的精度。  相似文献   

13.
燃烧加热风洞是目前开展超燃冲压发动机地面模拟试验的主要设备。燃烧加热风洞的试验时间(脉冲式和连续式)及燃烧方式(氢-氧燃烧、碳氢-氧燃烧)均会对发动机试验结果产生一定影响。研究了氢-氧燃烧脉冲风洞与氢-氧燃烧连续风洞、酒精-氧气燃烧连续风洞的数据相关性。研究表明:对于同为氢-氧燃烧的脉冲风洞和连续风洞,在相同试验状态下,发动机推进流道压力系数分布规律一致,连续风洞试验的燃烧室压力高于脉冲风洞试验值,连续风洞的发动机推力收益比脉冲风洞高10%左右;对于氢-氧燃烧脉冲风洞和酒精-氧气燃烧连续风洞,发动机推进流道压力系数分布规律一致,连续风洞试验的燃烧室压力高于脉冲风洞试验值,连续风洞的发动机推力收益比脉冲风洞高5%左右。  相似文献   

14.
连续旋转爆轰发动机的研究进展   总被引:8,自引:0,他引:8       下载免费PDF全文
连续旋转爆轰发动机(CRDE)是一种基于爆轰燃烧方式的新概念发动机,具有一次起爆、燃烧速度快、热效率高、结构紧凑等优点,有望带来航空航天推进技术的跨越式发展,近年来受到世界各主要国家的高度关注。本文从基本概念、应用前景、实验研究和数值模拟等角度,对连续旋转爆轰发动机的研究进展进行了全面综述。通过总结有代表性的研究成果,给出尚待解决的问题,为其进一步工程化应用研究提供参考。  相似文献   

15.
旋转冲压发动机是一种没有叶片和活塞的基于冲压压缩技术的新概念发动机,冲压转子是其惟一的核心转动构件。通过应用商用CFD(NUM ECA)软件,基于三维定常N-S方程和B-L湍流模型,对旋转冲压发动机冲压转子盘腔冷态流场进行了数值模拟,着重分析了其旋转冲压压缩效果和流场结构。分析结果表明,冲压转子能有效实现超声冲压压缩,进气道激波结构类似于超声进气道,但略有差异;盘腔内流场结构是带有周边小旋涡回流和低压中心区的大旋涡结构,这种流场结构有利于燃油供应和燃烧组织。  相似文献   

16.
在吸气式发动机研究中,需要监测其进气道气流流场分布、燃烧室温度分布和燃烧产物浓度来验证燃烧室内的燃烧理论模型并最终改进发动机设计;同时,这些参数的实时获取还可以用来控制发动机工作状态以实现燃烧效率优化。TDLAS(可调谐半导体激光吸收光谱)技术具有结构紧凑、响应快速、灵敏度高和非入侵式测量等优点,在高温、高速和剧烈振动等恶劣工作环境下可实现随机飞行的发动机测量,因此被国外多家研究机构采用。调研了高超声速燃烧发动机研究项目 HIFiRE及其在传感器小型化方面所采用的技术手段,介绍已有的小型化设计思路和取得的进展。已集成的小型化系统体积为30×15×10cm3,重量<5kg,功耗<10W。经验证,该系统可在发动机地面试验条件下稳定工作,给未来随发动机飞行的小型化测温系统设计提供了参考。  相似文献   

17.
基于层析原理的湍流火焰三维测量综述   总被引:1,自引:1,他引:0       下载免费PDF全文
实现对湍流火焰的三维测量是人们长期追求的目标之一。近十年,随着高速相机、激光、数值算法的高速发展,高时空分辨的三维燃烧诊断成为可能。对基于层析原理的三维燃烧诊断技术的发展与应用现状进行综述:首先介绍层析技术的原理以及相关算法的发展情况;其次对实现三维层析燃烧诊断的测量系统进行综述;再次,按照光学信号的分类,分别介绍层析技术结合发射光谱、激光诱导荧光、阴影/纹影、Mie散射等进行三维燃烧测量的应用情况;最后,从实际应用的角度出发,对层析三维燃烧诊断技术的发展提出展望。  相似文献   

18.
活塞式内燃发动机是现代工业中应用最为广泛的动力机械装置。由于其内部燃料喷射、蒸发、燃烧等复杂的工作过程会对发动机的结构可靠性、能量利用效率和污染物生成产生极大影响,研究内部过程的物理机理并确定控制策略对于发动机的设计和改进具有重要的科学意义和实用价值。近年来,为更加深入理解发动机内部工作过程,研究人员广泛采用光学诊断试验技术来测量发动机缸内流动和燃烧特性。本文首先介绍了各类用于模拟发动机工作过程的试验台架(如定容燃烧弹、快速压缩机、光学发动机等)。在此基础上,分析了各类光学诊断技术的基本原理及其在发动机研究中的应用。光学诊断技术分为两类进行讨论,分别是基于传统光学的传统诊断技术(如纹影法、双色法等)和基于激光的先进诊断技术(如粒子图像测速法、激光诱导荧光法等)。光学诊断技术可在多尺度下测量缸内温度、物质浓度、液滴粒径等参数,为准确评估发动机喷油、蒸发、燃烧过程提供试验依据。更重要的是,光学诊断技术为更加深入理解高温高压环境下流动、燃烧的物理/化学机理提供了可能性,为开发高功率、高能效、低排放的先进发动机提供可靠的试验手段,同时为研究人员未来开展基础试验研究、更加深入地理解发动机工作过程提供指导。  相似文献   

19.
基于总温测量的超燃冲压发动机燃烧效率研究   总被引:3,自引:1,他引:3       下载免费PDF全文
燃烧效率能够部分反映出燃烧室性能的优劣,是超燃冲压发动机性能评价的重要指标之一.基于总温测量的超燃冲压发动机燃烧效率获取方法不需要测量或计算燃气组分、摩擦力、支板阻力等,避免了上述过程带来的误差,可有效提高测量精度.利用新型半屏式总温传感器,成功测量了M6、当量比1状态下超燃冲压发动机燃烧室的出口总温,获得了基于温升比定义的发动机燃烧效率.  相似文献   

20.
对在高焓、持续工作时间短暂设备中进行伴有燃烧过程的气体动力模型的试验方法的特点作了介绍。根据俄罗斯科学院西伯利亚分院理论及应用研究所组织这种试验工作所积累的经验 ,描述了解决各种各类与燃烧有关的问题的模型配备 ;在发动机进气道中的推力空气动力特性、压力及热通量的测量结果等等。由此说明试验时间为 50~ 2 0 0ms的热射式风洞是解决燃烧问题的可靠设备  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号