首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present results from the analysis of an XMM-Newton observation of the Seyfert 1 galaxy NGC 7469, the first high resolution X-ray spectrum of this source. The Reflection Grating Spectrometer (RGS) spectrum has several narrow absorption and emission lines of O, N, C and Ne, originating from gas at a range of ionisation parameters, from log ξ1.6 to log ξ−2 (where ξ has the units erg cm s−1). We demonstrate that the ionisation state of the warm emitter is consistent with that of the high-ionisation phase of the warm absorber, and compare the warm absorber in this object with those in other sources.  相似文献   

2.
We report on the analysis of XMM-Newton archival data of EXO 0748–676. We studied changes of the continuum spectra due to the presence of photo-ionized plasma on the line of sight. We show that the ionization degree of the plasma could change largely during the X-ray bursts and the dips. These changes can significantly modify the soft-band spectrum, which was in fact observed from EXO 0748–676. We discuss the effect of the photo-ionized plasma on the continuum spectra in comparison with a frequently used model such as partial covering absorption.  相似文献   

3.
Observations and their analysis of the thermal X-ray spectrum of the M2 flare on 2003 April 26 are described. The spectrum observed by the RHESSI mission cover the energy range from ∼5 to ∼50 keV. With its ∼1-keV spectral resolution, intensities and equivalent widths of two line complexes, the Fe line group at 6.7 keV (mostly due to Fe xxv lines and Fe xxiv satellites) and the Fe/Ni line group at 8 keV (mostly due to higher-excitation Fe xxv lines and Ni xxvii lines) were obtained as a function of time through a number of flares. The abundance of Fe can also be determined from RHESSI spectra; it appears to be consistent with a coronal value for at least some times during the flare. Comparisons of RHESSI spectra with those from the RESIK crystal spectrometer on CORONAS-F show very satisfactory agreement, giving much confidence in the intensity calibration of both instruments.  相似文献   

4.
We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 active galactic nuclei (AGN) detected in the 2 Ms Chandra Deep Field-North Survey with >200 background-subtracted 0.5–8.0 keV counts [F0.5–8.0 keV = (1.4−200) × 10−15 erg cm−2 s−1]. Our preliminary spectral analyses yield median spectral parameters of Γ = 1.61 and intrinsic NH = 6.2 × 1021 cm−2 (z = 1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power-law model. However, considerable spectral complexity is apparent (e.g., reflection, partial covering) and must be taken into account to model the data accurately. Moreover, the choice of spectral model (i.e., free vs. fixed photon index) has a pronounced effect on the derived JVH distribution and, to a lesser extent, the X-ray luminosity distribution. We also find that among the 136 AGN, 10 (≈7%) show significant Fe K emission-line features with equivalent widths in the range 0.1–1.3 keV. Two of these emission-line AGN could potentially be Compton thick (i.e., Γ < 1.0 and large Fe K equivalent width). Finally, we find that 81 (≈60%) of the 136 AGN show signs of variability, and that this fraction increases significantly (≈80–90%) when better photon statistics are available.  相似文献   

5.
We present results from ROSAT observations of NGC 1808 and NGC 2903. Exposures of 10 ksec each with the PSPC detector show X-ray sources at the central positions of both galaxies which are classified as nuclear starburst galaxies. Both targets, NGC 1808 and NGC 2903 appear slightly extended in X-ray maps in the energy band 0.1–2.4 keV. The X-ray spectrum of NGC 1808 shows almost complete absorption below 0.5 keV, indicating an extremely high hydrogen column density towards that source (NH ≈ 8 × 1021cm−2 resulting from model fits on the PSPC spectrum). In case of NGC 2903, the number of counts in the ROSAT band is significantly lower than expected from a previous EINSTEIN investigation of the source.  相似文献   

6.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

7.
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538−52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution.

Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.  相似文献   


8.
The dramatic changes seen in the X-ray spectral and timing properties of accreting black hole candidates (BHCs) provide important clues about the accretion and jet formation processes that occur in these systems. Dividing the different source behaviors into spectral states provides a framework for studying BHCs. To date, there have been three main classification schemes with Luminosity-based, Component-based, or Transition-based criteria. The canonical, Luminosity-based criteria and physical models that are based on this concept do not provide clear explanations for several phenomena, including hysteresis of spectral states and the presence of jets. I discuss the re-definitions of states, focusing on an application of the Component-based states to more than 400 RXTE observations of the recurrent BHC 4U 1630–47. We compare the X-ray properties for the recent 2002–2004 outburst to those of an earlier (1998) outburst, during which radio jets were observed. The results suggest a connection between hysteresis of states and major jet ejections, and it is possible that both of these are related to the evolution of the inner radius of the optically thick accretion disk.  相似文献   

9.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


10.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   

11.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

12.
The hard X-ray spectra of small subset of accreting pulsars show absorption-like line features in the range 10–100 keV. These lines, referred to as cyclotron lines or cyclotron resonance scattering features, are due to photons scattered out of the line of sight by electrons trapped in the 1012 G pulsar polar cap magnetic field. In this paper we present a review of observations, from the discovery of a cyclotron line in Hercules X-1 to recent results with RXTE and INTEGRAL.  相似文献   

13.
We interpret the rapid correlated UV/optical/X-ray variability of XTE J1118+480 as a signature of the coupling between the X-ray corona and a jet emitting synchrotron radiation in the optical band. We propose a scenario in which the jet and the X-ray corona are fed by the same energy reservoir where large amounts of accretion power are stored before being channelled into either the jet or the high energy radiation. This time-dependent model reproduces the main features of the rapid multi-wavelength variability of XTE J1118+480. A strong requirement of the model is that the total jet power should be at least a few times larger than the observed X-ray luminosity, implying a radiative efficiency for the jet j  3 × 10−3. This would be consistent with the overall low radiative efficiency of the source. We present independent arguments showing that the jet probably dominates the energetic output of all accreting black holes in the low-hard state.  相似文献   

14.
Broad-band spectra of accreting X-ray binary pulsars can be fitted by a phenomenological model composed of a power law with a high energy rollover above 10 keV, plus a blackbody component with a temperature of few hundred eV. While, at least qualitatively, the hard tail can be explained in terms of (inverse) Compton scattering, the origin of the soft component cannot find a unique explanation. Recently, a qualitative picture able to explain the overall broad-band spectrum of luminous X-ray pulsars was carried out by taking into account the effect of bulk Comptonization in the accretion column. After a review of these recent theoretical developments, I will present a case study of how different modeling of the continuum affect broad features, in particular the cyclotron resonance features in Vela X-1.  相似文献   

15.
I present a short overview of the behavior and properties of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) seen in the accreting millisecond X-ray pulsar SAX J1808.4–3658. I will focus on the behavior of the upper frequency QPO as a function of time and count rate as seen during the 2002 outburst of this source. I will also discuss briefly the correlated behavior of this QPO with QPOs at lower frequencies (several tens of hertz).  相似文献   

16.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

17.
The determination of fundamental parameters in X-ray luminous (persistent) X-ray binaries has been classically hampered by the large optical luminosity of the accretion disc. New methods, based on irradiation of the donor star and burst oscillations, provide the opportunity to derive dynamical information and mass constraints in many persistent systems for the first time. These techniques are here reviewed and the latest results presented.  相似文献   

18.
We present here results obtained from three BeppoSAX observations of the transient X-ray pulsar GRO J1948+32 carried out during the declining phase of its 2000 November–2001 June outburst. Timing analysis of the data clearly shows a 18.7 s pulsation in the X-ray light curves in 0.1–100 keV energy band. The pulse profile of GRO 1948+32 is characterized by a broad peak with a sharp rise followed by a narrow dip. The dip in the pulse profile shows very strong energy dependence. Phase-averaged spectroscopy obtained with three of the BeppoSAX instruments shows that the 0.1–100 keV energy spectrum is described by a Comptonized component, a weak blackbody component (7% of the total emission) for soft X-rays, a narrow and weak iron emission line at 6.7 keV and low column density of material in the line of sight. The results obtained from the analysis are discussed in this paper.  相似文献   

19.
I discuss morphology and spectrum of the first resolved and detected classical nova shell in the X-rays – the remnant of GK Persei (1901). The existence of such a nebulosity brings about the possibility of other nova remnants emitting X-rays. I calculate that the X-ray luminosity should be about 1026–1033 ergs s−1 on the onset of cooling for nova remnants. I have done an archival search on 250 classical and recurrent nova candidates using Chandra, XMM-Newton, ROSAT and ASCA databases. There is no significant extended emission detected which places an upper limit of Fx < × 10−12 erg s−1 cm−2 (unabsorbed). Only exceptions are GK Per, RR Pic and DQ Her (all observed by Chandra ACIS-S and GK Per also by ROSAT HRI) where the latter two show marginal extended emission in the X-rays associated with emission knots (DQ Her) or an equatorial ring (RR Pic).  相似文献   

20.
With its ability to look at bright galactic X-ray sources with sub-millisecond time resolution, the Rossi X-ray Timing Explorer (RXTE) discovered that the X-ray emission from accreting compact stars shows quasi-periodic oscillations on the dynamical timescales of the strong field region. RXTE showed also that waveform fitting of the oscillations resulting from hot spots at the surface of rapidly rotating neutron stars constrain their masses and radii. These two breakthroughs suddenly opened up a new window on fundamental physics, by providing new insights on strong gravity and dense matter. Building upon the RXTE legacy, in the Cosmic Vision exercise, testing General Relativity in the strong field limit and constraining the equation of state of dense matter were recognized recently as key goals to be pursued in the ESA science program for the years 2015–2025. This in turn identified the need for a large (10 m2 class) aperture X-ray observatory. In recognition of this need, the XEUS mission concept which has evolved into a single launch L2 formation flying mission will have a fast timing instrument in the focal plane. In this paper, I will outline the unique science that will be addressed with fast X-ray timing on XEUS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号