首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
减小翼型激波阻力的鼓包流动控制技术   总被引:2,自引:0,他引:2  
针对2020年使用的N+2代民用飞机的翼身融合(BWB)布局发展需要,以减小激波阻力为目标,采用计算流体力学(CFD)方法,开展弱化激波、减小激波阻力的鼓包流动控制技术研究.提出了λ形激波结构“强干扰”和等熵压缩“弱干扰”两种鼓包激波减阻流动控制原理,给出了两种鼓包基本形状设计方法和工程应用的可行性分析,指出λ形激波结...  相似文献   

2.
本文分析和对比了正激波和后掠激波/边界层干扰的机理,并用几个典型的算例说明了其差别.本文的结果指出,由于后掠的压力梯度方向垂直于激波,并且边界层内速度存在平行于激波的横向分量,会导致边界层内的速度分布形成空间"扭曲",可以阻止部分边界层进入激波后,并使穿过激波的部分边界层气流形成向两侧发散的趋势.这证明利用后掠激波/边界层干扰效应控制边界层是可行的.这也是实现近年来国内外兴起的"无隔道进气道"的关键机理之一.  相似文献   

3.
为寻找到可变后掠翼飞机的最佳变后掠规律,利用CATIA生成不同后掠角模型,使用Fluent模拟不同高度的环境并利用遗传算法得出最佳的变后掠规律,最后将计算数据进行拟合分析.研究结果表明,在不同高度下,最佳变后掠规律大体趋势相似,但5000m时优势略明显.这个结论为今后可变机翼无人机的设计提供了一定的依据.  相似文献   

4.
5.
后掠压缩角激波边界层柱形干扰研究   总被引:2,自引:0,他引:2  
本文给出了由后掠压缩角模型引起的激波和湍流边界层干扰的实验研究结果,着重提出了柱形干扰中的尺度特性。本实验中的马赫数为1.79,2.04和2.50,相应的雷诺数为2.42~2.47×10~7/米。模型后掠角的变化范围是0°到60°,流向压缩角的变化范围为0°到30°。实验结果表明,在本实验的马赫数范围内,干扰流动的上游影响区呈现柱形或锥形,如果考虑横流效应,柱形干扰区的上游影响尺度能和二维压缩角的上游影响尺度相关联。其相关关系仅受后掠角和来流马赫数的影响,而与压缩角大小无关。  相似文献   

6.
后掠翼身干扰区流动特性及改善措施研究   总被引:2,自引:0,他引:2  
利用流动显示及表面压力测量方法研究了后掠翼身干扰区的流动特性,并研究了用小边条等措施改善干扰区的流动特性的效果。结果表明,随着不同机翼后掠角、不同迎角及不同Re数对干扰区流动特性的影响,流成可以从一涡系变成多涡系由定常变成非定常,而且在一定的Re数以后涡系会湍流化;翼身干扰区上游的的逆压梯度是导致边界层分离的物理原因,利用面积很小的边条可以降低干扰区局部的逆压梯度,可以导至干扰区的旋涡很弱,甚至不  相似文献   

7.
8.
章胜华  邓枫  覃宁  刘学强 《航空学报》2022,43(11):353-368
在跨声速飞行时,激波控制鼓包不仅能够减弱机翼上表面的激波强度从而降低波阻,对跨声速抖振也有一定的改善作用。通过URANS方法数值模拟来探究二维激波控制鼓包对OAT15A超临界翼型跨声速抖振性能的影响规律,并研究以巡航设计点减阻与抖振状态减振2种目标设计的鼓包的区别。以巡航设计点减阻优化设计出的鼓包,在抖振条件下,能够推迟了翼型上表面的压力恢复,减弱了激波与边界层的相互干扰作用,达到减弱抖振幅度的效果,然而不能对抖振实现完全抑制。通过改变鼓包相对位置、高度和长度计算得到鼓包参数对抖振的影响规律,分析典型流场得到鼓包抑制抖振现象的工作机理是:鼓包减弱了激波强度的同时,阻碍了鼓包尾部边界层向上游移动与激波相互干扰,从而稳定了激波抖振现象。另外,基于巡航设计点减阻设计的2个鼓包相对参考位置距离分别为0.04c和0.10c(c为翼型弦长),与同等高度鼓包在抖振状态完全抑制抖振且不降低升力的位置范围的[-0.01,0.02]c和[0.01,0.08]c不同,二者位置最小相差0.02c,而鼓包这段距离差异对巡航特性和抖振性能都有着重要影响作用。总而言之,以巡航设计点减阻与抖振状态减振2种目标设计得到...  相似文献   

9.
10.
在西北工业大学的低湍流度风洞中,采用升华法研究有无粗糙带情况下,45°后掠翼三维边界层内的横流驻波不稳定性及其转捩模式。在未引入人工粗糙带,雷诺数为5.50×105~1.65×106范围内,模型的转捩分界始终为位于最小压力点之后的一条直线,转捩由T-S波触发。当Re≥1.38×106时,对应最不稳定横流驻波的3.5~4.0mm条纹出现在转捩的上游区域,条纹间距与线化稳定性理论的结果吻合。当Re=1.65×106时,实验证实了横流驻波扰动对前缘粗糙度的极度敏感。考虑到抑制最不稳定横流驻波就很有可能抑制后掠翼飞行器上由其主导的转捩,在机翼前缘布置不同间距的粗糙带,研究其对边界层内横流驻波的影响。当Re=1.38×106时,2.5mm间距的粗糙带有效的抑制了3.5~4.0mm最不稳定驻波,该现象为后掠翼上的转捩控制技术提供了一条新思路。此外,当6.0mm、7.0mm和8.0mm的粗糙带被引入时,条纹间隔表现为3.0mm、3.5mm和4.0mm的谐波波长。  相似文献   

11.
弹舱对飞翼布局飞机气动特性影响及其控制   总被引:1,自引:0,他引:1  
以高速风洞气动力测量为研究手段,开展了弹舱开启对飞翼布局飞机气动特性影响及其流动控制试验研究。试验结果表明,对于飞翼布局飞机,弹舱开启主要影响飞机阻力特性,巡航状态下,弹舱开启后使得全机阻力增加60%~110%,Ma=0.8时全机升阻比降低34%。通过在弹舱前缘安装扰流片,对弹舱腔口剪切层施加流动控制,巡航状态下弹舱开启附加阻力最多降低20%,Ma=0.8时全机升阻比提高12.6%。  相似文献   

12.
实体鼓包改进超临界翼型跨声速气动特性研究   总被引:2,自引:1,他引:1  
采用风洞试验手段,初步研究了高速试验条件下二元翼型加载的实体鼓包高度、形状、安装位置等多方面因素对其减阻特性的影响,结果表明,实体鼓包可以减小阻力系数,在某些特定情况下(一般为中高升力系数情况下)可明显提高升阻比;实体鼓包的最佳应用场合是中高升力系数情况,小升力系数情况下不宜采用实体鼓包,如采用,则应使用较小的最大高度。为充分发挥实体鼓包的减阻作用,并且不至于因此导致气动性能的下降,最佳方法是采用自适应实体鼓包,根据需要随时改变其位置和高度。  相似文献   

13.
微型凸起作为减小阻力的一种有效措施已经备受关注.开展了等熵压缩"弱激波"干扰鼓包用于RAE2822超临界翼型的减阻作用机制研究以及NACA0012对称翼型表面脊状结构减阻特性的数值模拟研究.结果表明:通过鼓包参数最优匹配,可达到弱化激波、减小波阻、提高升阻比、延缓抖振边界等目的;同时,通过对比不同脊状结构、不同网格密度对计算结果的影响,总结了多个速度下脊状表面的减阻规律.所得结论为进一步开展微型凸起类流动控制用于机翼的减阻特性研究奠定了坚实基础.  相似文献   

14.
陈旭亮  张琛  季宏丽  裘进浩 《航空学报》2021,42(9):224652-224652
激波控制鼓包SCB是一种减小激波阻力的流动控制技术。为了解决固定挠度鼓包工作范围较窄的问题,提出了一种具有双向记忆效应的形状记忆合金SMA鼓包,通过控制SMA鼓包的温度来改变其挠度。SMA鼓包最大可回复位移为6.1 mm,为鼓包变形区域的2.65%。针对迟滞现象对鼓包挠度控制的影响,基于(Krasnosel'skii-Pokrovskii,KP)模型对SMA鼓包的温度/挠度迟滞特性进行了建模研究。采用粒子群算法来辨识模型参数,辨识得到的迟滞模型最大误差为0.107 mm。设计了2种基于KP模型的PID控制方案,一种为无迟滞补偿的单目标PID控制,一种为迟滞逆模型前馈补偿的双目标PID控制。仿真与实验结果表明,迟滞逆模型前馈补偿的双目标PID控制时域性能优于无迟滞补偿的单目标PID控制。  相似文献   

15.
新世纪航空市场对能耗、噪音等限制性要求继续加强,新一代民用飞机需要在气动减阻方面取得重大突破,自然层流机翼技术成为研究热点.总结了层流技术类别,回顾了自然层流机翼的主要研究历程,介绍了当前正在开展的欧洲TELFONA计划和美国ERA计划中的自然层流机翼的研究进展,概述了自然层流机翼应用情况和自然层流短舱,分析了自然层流机翼的实际应用难题,展望了自然层流技术在新一代民用飞机中的应用.  相似文献   

16.
杨一雄  杨体浩  白俊强  史亚云  卢磊 《航空学报》2018,39(1):121448-121448
使用扩展自由变形参数化方法,基于径向基函数的动网格技术和改进的混合粒子群算法,考虑吸气的eN转捩预测方法和雷诺平均Navier-Stokes求解器,搭建了针对混合层流流动控制(HLFC)后掠翼的优化设计平台,对HLFC后掠翼的气动外形设计、雷诺数影响、吸气分布设计等多个问题进行了研究,对比分析了在这些因素影响下HLFC后掠翼的阻力系数和层流区长度的差别,进而探索了相应的设计准则。研究表明,对于层流区较长和阻力系数较小的HLFC后掠翼来说,它们上表面的压力分布具有共同的特征:头部峰值较低,之后有一个小的逆压,接下来是一段较长的均匀稳定的顺压,这段顺压最后终结于一道激波。应用HLFC技术后,通过实现大面积的层流区,机翼的摩擦阻力和压差阻力均可显著地降低,降低的幅度远大于不考虑层流控制的设计结果。同时,HLFC机翼的设计应综合考虑摩擦阻力、压差阻力、激波强度和配平阻力(低头力矩),层流区最长不一定意味着阻力最小。一般来说,雷诺数越高,越难维持层流,但应用混合层流控制技术后,即使在难以实现自然层流的高雷诺数下,HLFC机翼依然有较长的层流区。通过对吸气分布的设计进行研究,说明了非均匀吸气比均匀吸气要更有效率一些,能够节省吸气量。  相似文献   

17.
Current research shows that the traditional shock control bump (SCB) can weaken the intensity of shock and better the transonic buffet performance.The author finds that when SCB is placed downstream of the shock,it can decrease the adverse pressure gradient.This may prevent the shock foot separation bubble to merge with the trailing edge separation and finally improve the buffet performance.Based on RAE2822 airfoil,two types of SCB are designed according to the two different mechanisms.By using Reynolds-averaged Navier-Stokes (RANS) and unsteady Reynolds-averaged Navier-Stokes (URANS) methods to analyze the properties of RAE2822 airfoil with and without SCB,the results show that the downstream SCB can better the buffet performance under a wide range of freestream Mach number and the steady aerodynamics characteristic is similar to that of RAE2822 airfoil.The traditional SCB can only weaken the intensity of the shock under the design condition.Under the off-design conditions,the SCB does not do much to or even worsen the buffet performance.Indeed,the use of backward bump can flatten the leeward side of the airfoil,and this is similar to the mechanism that supercritical airfoil can weaken the recompression of shock wave.  相似文献   

18.
为增加小展弦比飞翼类布局飞机的操纵特性,并满足其对隐身性能的要求,将模型跟踪控制器和涡流控制器进行综合使用.模型跟踪是一种提高系统闭环响应并跟踪驾驶员指令的方法,通过此方法可使动态特性较差的飞机对动态特性较好的飞机输出进行跟踪,由此来改善飞机的动态特性.增加涡流控制可以进一步扩展模型跟踪控制的作用效果,涡流控制器使用变步长神经网络进行训练.结果表明,两种方法的综合使用可以有效地提高飞机的动态特性,通过增加涡流控制后,进一步增加了模型跟踪控制的作用效果.  相似文献   

19.
超声速压气机叶栅前缘通道激波损失的鼓包控制研究   总被引:1,自引:0,他引:1  
为了有效减小超声速压气机叶栅变进气马赫数条件下的前缘通道激波损失及由激波诱导的边界层分离,提出了一种带有平直过渡区的新型鼓包结构,并采用数值方法详细分析了新型鼓包结构对激波与激波/边界层相互作用机理以及鼓包几何尺寸与位置对控制效果的影响机制。研究结果表明:新型鼓包在迎风侧凹面产生的压缩波系有效削弱了前缘通道激波的强度,鼓包过渡区产生的膨胀波系使边界层流体加速,明显抑制了局部流动分离,并使分离提前再附。当某一超声速压气机叶栅的前缘通道激波入射在鼓包的过渡区范围内,鼓包高度为0.35倍的边界层厚度且鼓包迎风侧与背风侧长度分别为过渡区长度4倍与5倍时,可以实现较好的控制效果。此外,与无鼓包方案相比,新型鼓包结构可使超声压气机叶栅在设计工况下的总压损失减少4.6%,同时超声速压气机叶栅进气马赫数在1.65~1.8范围内仍能取得较好的气动减损效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号