共查询到20条相似文献,搜索用时 15 毫秒
1.
H. T. Howard V. R. Eshleman D. P. Hinson A. J. Kliore G. F. Lindal R. Woo M. K. Bird H. Volland P. Edenhofer M. Pätzold H. Porsche 《Space Science Reviews》1992,60(1-4):565-590
The radio science investigations planned for Galileo's 6-year flight to and 2-year orbit of Jupiter use as their instrument the dual-frequency radio system on the spacecraft operating in conjunction with various US and German tracking stations on Earth. The planned radio propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements will be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system used for these investigations is based on Voyager heritage but with several important additions and modifications that provide linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. Collaboration between the investigators and the space-craft communications engineers has resulted in the first highly-stable, dual-frequency, spacecraft radio system suitable for simultaneous measurements of all the parameters normally attributed to radio waves. 相似文献
2.
3.
Freja
*, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities. 相似文献
4.
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission uses a suite of imaging instruments to investigate the global response of the magnetosphere to changing solar wind conditions. Detailed science questions that fall under this broad objective include plasma processes that occur on the dayside, flanks, and nightside of the magnetosphere. The IMAGE orbit has been carefully designed to optimize the investigation of these plasma processes as the orbit precesses through the magnetospheric regions. We discuss here the phasing of the IMAGE orbit during the two-year prime mission and the relationship between the orbit characteristics and the critical science objectives of the mission. 相似文献
5.
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) will produce forefront science by quantifying the response of the magnetosphere to the time variable solar wind. It will acquire, for the first time, a variety of three-dimensional images of magnetospheric boundaries and plasma distributions extending from the magnetopause to the inner plasmasphere. The images will be produced on time scales needed to answer important questions about the interactions of the solar wind and the magnetosphere. The IMAGE team will provide open access to all IMAGE data. Thus there will be no proprietary rights or periods. All IMAGE data products will be archived and available to the scientific research community. The IMAGE mission will operate with a near 100% duty cycle with all instruments in their baseline operational modes. A Science and Mission Operations Control Center or SMOC has been developed at the NASA Goddard Space Flight Center (GSFC) to be the main data and command processing system for IMAGE. The IMAGE Level-0 data will be processed into Level 0.5 and Level-1 data and browse products within 24 hours after their receipt of raw data in the SMOC. These data products will be transferred to the NSSDC, for long-term archiving, and posted immediately on the world-wide-web for use by the international scientific community and the public. 相似文献
6.
《COSPAR's Information Bulletin》1987,1987(108):86-87
7.
The Galileo Near-Infrared Mapping Spectrometer (NIMS) is a combination of imaging and spectroscopic methods. Simultaneous use of these two methods yields a powerful combination, far greater than when used individually. For geological studies of surfaces, it can be used to map morphological features, while simultaneously determining their composition and mineralogy, providing data to investigate the evolution of surface geology. For atmospheres, many of the most interesting phenomena are transitory, with unpredictable locations. With concurrent mapping and spectroscopy, such features can be found and spectroscopically analyzed. In addition, the spatial/compositional aspects of known features can be fully investigated. The NIMS experiment will investigate Jupiter and the Galilean satellites during the two year orbital operation period, commencing December 1995. Prior to that, Galileo will have flown past Venus, the Earth/Moon system (twice), and two asteroids; obtaining scientific measurements for all of these objects.The NIMS instrument covers the spectral range 0.7 to 5.2 , which includes the reflected-sunlight and thermal-radiation regimes for many solar system objects. This spectral region contains diagnostic spectral signatures, arising from molecular vibrational transitions (and some electronic transitions) of both solid and gaseous species. Imaging is performed by a combination of one-dimensional instrument spatial scanning, coupled with orthogonal spacecraft scan-platform motion, yielding two-dimensional images for each of the NIMS wavelengths.The instrument consists of a telescope, with one dimension of spatial scanning, and a diffraction grating spectrometer. Both are passively cooled to low temperatures in order to reduce background photon shot noise. The detectors consist of an array of indium antimonide and silicon photovoltaic diodes, contained within a focal-plane-assembly, and cooled to cryogenic temperatures using a radiative cooler. Spectral and spatial scanning is accomplished by electro-mechanical devices, with motions executed using commandable instrument modes.Particular attention was given to the thermal and contamination aspects of the Galileo spacecraft, both of which could profoundly affect NIMS performance. Various protective measures have been implemented, including shades to protect against thruster firings as well as thermal radiation from the spacecraft.The Near Infrared Mapping Spectrometer (NIMS) Engineering and Science Teams consist of I. Aptaker (Instrument Manager), G. Bailey (Detectors), K. Baines (Science Coordinator), R. Burns (Digital Electronics), R. Carlson (Principal Investigator), E. Carpenter (Structures), K. Curry (Radiative Cooler), G. Danielson (Co-Investigator), T. Encrenaz (Co-Investigator), H. Enmark (Instrument Engineer), F. Fanale (Co-Investigator), M. Gram (Mechanisms), M. Hernandez (NIMS Orbiter Engineering Team), R. Hickok (Support Equipment Software), G. Jenkins (Support Equipment), T. Johnson (Co-Investigator), S. Jones (Optical-Mechanical Assembly), H. Kieffer (Co-Investigator), C. LaBaw (Spacecraft Calibration Targets), R. Lockhart (Instrument Manager), S. Macenka (Optics), J. Mahoney (Instrument Engineer), J. Marino (Instrument Engineer), H. Masursky (Co-Investigator), D. Matson (Co-Investigator), T. McCord (Co-Investigator), K. Mehaffey (Analog Electronics), A. Ocampo (Science Coordinator), G. Root (Instrument System Analysis), R. Salazar (Radiative Cooler and Thermal Design), D. Sevilla (Cover Mechanisms), W. Sleigh (Instrument Engineer), W. Smythe (Co-Investigator and Science Coordinator), L. Soderblom (Co-Investigator), L. Steimle (Optics), R. Steinkraus (Digital Electronics), F. Taylor (Co-Investigator), P. Weissman (Co-Investigator and Science Coordinator), and D. Wilson (Manufacturing Engineer). 相似文献
8.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI
Atmospheric Structure Instrument
- EPI
Energetic Particles Instrument
- HGA
High Gain Antenna
- IUS
Inertial Upper Stage
- JOI
Jupiter Orbit Insertion
- JPL
Jet Propulsion Laboratory
- LRD
Lightning and Radio Emissions Detector
- NASA
National Aeronautics and Space Administration
- NEP
Nephelometer
- NIMS
Near-Infrared Mapping Spectrometer
- ODM
Orbit Deflection Maneuver
- OTM
Orbit Trim Maneuver
- PJR
Perijove Raise Maneuver
- PM
Propellant Margin
- PDT
Pacific Daylight Time
- PST
Pacific Standard Time
- RPM
Retropropulsion Module
- RRA
Radio Relay Antenna
- SSI
Solid State Imaging
- TCM
Trajectory Correction Maneuver
- UTC
Universal Time Coordinated
- UVS
Ultraviolet Spectrometer
- VEEGA
Venus-Earth-Earth Gravity Assist 相似文献
9.
Eberhard Grün Hugo Fechtig Martha S. Hanner Jochen Kissel Bertil-Anders Lindblad Dietmar Linkert Dieter Maas Gregor E. Morfill Herbert A. Zook 《Space Science Reviews》1992,60(1-4):317-340
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given. 相似文献
10.
《Air & Space Europe》1999,1(2):37-41
The Commission's Communication of January 1998 summarised the roles and responsibilities which should be included in a GNSS organisational framework. The GNSS-2 Forum has further refined the work on these questions. 相似文献
11.
《Air & Space Europe》1999,1(2):33-36
Given the present policy of the US to provide the basic GPS signal free of charge, it would be illusory to imagine that Galileo could be developed and provided exclusively by the private sector. 相似文献
12.
B. Ragent C. A. Privette P. Avrin J. G. Waring C. E. Carlston T. C. D. Knight J. P. Martin 《Space Science Reviews》1992,60(1-4):179-201
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased. 相似文献
13.
We discuss the scientific objective, instrument design, and calibration of a miniaturized Jamin-Mascart interferometer which is to perform an accurate measurement of the refractive index of the Jovian atmosphere in the pressure range 2.5 to 10 bar. The instrument is to perform this measurement in December 1995 aboard the entry probe of the NASA Galileo spacecraft. From the data obtained the mole fraction of helium in the atmosphere of Jupiter is to be calculated with an estimated uncertainty of ± 0.0015. The instrument has a total mass of 1.4 kg and consumes 0.9 W of electrical power. 相似文献
14.
C. W. Hord W. E. McClintock A. I. F. Stewart C. A. Barth L. W. Esposito G. E. Thomas B. R. Sandel D. M. Hunten A. L. Broadfoot D. E. Shemansky J. M. Ajello A. L. Lane R. A. West 《Space Science Reviews》1992,60(1-4):503-530
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg × 0.1 deg for illuminated disc observations and 1 deg × 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg × 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170–432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere. 相似文献
15.
L. A. Frank K. L. Ackerson J. A. Lee M. R. English G. L. Pickett 《Space Science Reviews》1992,60(1-4):283-304
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere. 相似文献
16.
Dagarin B.P. Taenaka R.K. Stofel E.J. 《Aerospace and Electronic Systems Magazine, IEEE》1996,11(6):6-13
NASA's pair of Galileo spacecraft arrived at Jupiter on 7 December 1995. The Probe descended into the upper Jovian atmosphere, performing its planned sequence of scientific measurements of the properties of that medium for about an hour. This Probe has been the most ambitious planetary entry vehicle to date. It evolved over several years of planning and construction, its launch was postponed many times, for a variety of reasons; and it required more than 6 years of travel after launch to reach the planet. Its electrical power was provided by a primary Li-SO2 battery, supplemented with two thermal batteries (CaCrO4-Ca) used for firing pyrotechnic initiators during the atmospheric entry. These power sources were designed to be robust, to assure they would perform their intended function after surviving several years in space. This paper discusses the final production, qualification, and the systems testing of these batteries prior to and following launch. Their excellent performance at Jupiter confirmed their life enhancement design features 相似文献
17.
Michael J. S. Belton Kenneth P. Klaasen Maurice C. Clary James L. Anderson Clifford D. Anger Michael H. Carr Clark R. Chapman Merton E. Davies Ronald Greeley Donald Anderson Lawrence K. Bolef Timothy E. Townsend Richard Greenberg James W. Head III Gerhard Neukum Carl B. Pilcher Joseph Veverka Peter J. Gierasch Fraser P. Fanale Andrew P. Ingersoll Harold Masursky David Morrison James B. Pollack 《Space Science Reviews》1992,60(1-4):413-455
18.
Galileo Probe Mass Spectrometer experiment 总被引:1,自引:0,他引:1
H. B. Niemann D. N. Harpold S. K. Atreya G. R. Carignan D. M. Hunten T. C. Owen 《Space Science Reviews》1992,60(1-4):111-142
The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases.The instrument consists of a gas sampling system which is connected to a quadrupole mass analyzer for molecular weight analysis. In addition two sample enrichment cells and one noble gas analysis cell are part of the sampling system. The mass range of the quadrupole analyzer is from 2 amu to 150 amu. The maximum dynamic range is 108. The detector threshold ranges from 10 ppmv for H2O to 1 ppbv for Kr and Xe. It is dependent on instrument background and ambient gas composition because of spectral interference. The threshold values are lowered through sample enrichment by a factor of 100 to 500 for stable hydrocarbons and by a factor of 10 for noble gases. The gas sampling system and the mass analyzer are sealed and evacuated until the measurement sequence is initiated after the Probe enters into the atmosphere of Jupiter. The instrument weighs 13.2 kg and the average power consumption is 13 W.The instrument follows a sampling sequence of 8192 steps and a sampling rate of two steps per second. The measurement period lasts appropriately 60 min through the nominal pressure and altitude range. 相似文献
19.
作为两颗"伽利略在轨验证元素"(GIOVE)试验卫星中的第一颗,Giove-A,于2005年12月28日当地时间上午11时19分在哈萨克斯坦拜科努尔航天中心发射升空,经过"弗雷盖特"(Fregat)上面级火箭的三次点火后,这颗由英国萨里卫星技术公司制造的试验卫星被送入了高23230千米、倾角56度的轨道. 相似文献
20.
E. E. Russell F. G. Brown R. A. Chandos W. C. Fincher L. F. Kubel A. A. Lacis L. D. Travis 《Space Science Reviews》1992,60(1-4):531-563
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures. 相似文献