首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solar cycle variation and seasonal changes significantly affects the ionization process of earth’s ionosphere and required to be monitored in real time basis for regional level refinement of existing models. In view of this, the present study has been carried out by using the ionospheric Total Electron Content (TEC) data observed with the help of Global Ionospheric Scintillation and TEC monitoring (GISTM) system installed at Indian Antarctic Research Station, “Maitri” [70°46′00″S 11°43′56″E] during the ascending phase of 24th solar cycle. The daily values of solar extreme ultraviolet (EUV) flux (0.1–50?nm wavelength), 10.7?cm radio flux F10.7 and Sunspot number (SSN) has been taken as a proxy to represent the solar cycle variation to correlate with TEC. The linear regression results revels better correlation of TEC with EUV flux rather than F10.7 and SSN. Also, the EUV and TEC show better agreement during summer as compared to winter and equinox period. Correlation between TEC and EUV appears significantly noticeable during ten internationally defined quiet days of each month (stable background geophysical condition) as compared to the overall days (2010–2014). Further, saturation effect has been observed on TEC values during the solar maxima year 2014. The saturation effects are more prominent during the night hours of winter and equinox season due to transportation losses manifested by the equator-ward direction of meridional wind.  相似文献   

2.
Langmuir probe measurements made at solar maximum from the Dynamics Explorer-2 satellite in 1981 and 1982 are employed to examine the latitudinal variation of electron temperature, Te, at altitudes between 300 and 400 km and its response to 27 day variations of solar EUV. Comparison of these data with Te models based on the solar minimum measurements from Atmosphere Explorer-C suggest that the daytime Te does not change very much during the solar cycle, except at low latitudes where an especially large 27 day variation occurs. The 27 day component decreases from about 7°/F10.7 unit at the equator to 3°/F10.7 unit at 851V 3 middle and higher latitudes. From these DE-2 measurements, and those from AE-C, we conclude that the daytime Te near the F2 peak is more responsive to short-term (daily) variations in F10.7 than to any longer term changes that may occur between solar minimum and solar maximum. To investigate this sensitivity of the dayside ionosphere to solar activity we employ the inverse relationship of Te and Ne, that was found at solar minimum, to see if it can be used to order the Te behaviour at solar maximum. We introduce a simple quadratic correction for the F10.7 influence on Te based on the entire daytime AE-C and DE-2 data base between 300 and 400 km. Although this equation may be found useful, the systematic deviations of the DE-2 data suggest that the solar minimum model does not accurately describe the Te-Ne relationships at solar maximum, at least above 300 km where the DE-2 measurements were made. Future work with this data base should attempt to see if such a relationship exists.  相似文献   

3.
The trends in foF2 are analyzed based on the data of Juliusruh and Boulder ionospheric stations. It is shown that using the traditional solar activity index F10.7 leads to an impossible trend in foF2 when the data for the 24th solar activity cycle are included into the analysis. It is assumed that the F10.7 index does not describe correctly the solar ultraviolet radiation variations in that cycle. A correction of this index using the Rz (sunspot number) and Ly (intensity of the Lyman-α line in the solar spectrum) is performed, and it is shown that in that case reasonable values of the foF2 trends are obtained.  相似文献   

4.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

5.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

6.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

7.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

8.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

9.
In-situ measurements of ion and neutral composition and temperature across the dayside of Venus during 1979–1980 exhibit long and short-term changes attributed to solar variations. Following solar maximum, dayside concentrations of CO+ and the neutral gas temperature are relatively smoothly modulated with a 28-day cycle reasonably matching that of the solar F10.7 and EUV fluxes. Measurements some 6–8 months earlier show less pronounced and more irregular modulation, and short-term day-to-day fluctuations in the ions and neutrals are relatively more conspicuous than in the later period. During the earlier period, the solar wind at Venu exhibits relatively large velocity enhancements, which appear to be consistent with differences in solar coronal behavior during the two periods. It is suggested that through the solar wind variations and associated changes in the draping of the interplanetary magnetic field about the dayside, fluctuating patterns of joule heating may occur, producing the observed short term ion and neutral variations. This indirect energy effect, if verified, presents a complication for quantitatively analyzing the modulation in neutral temperature and ion concentration produced by changes in direct EUV radiation.  相似文献   

10.
A homogeneous series of 25 years, 1959–1983, of daily measurements of low-frequency radio wave reflection heights in the lower ionosphere (around 80 km), at constant zenith distance of the Sun, has been analysed. After removing the 11-yr solar cycle variation from these data by means of empirical regression coefficients with the solar activity index, F10.7, a significant residual variation remains with a maximum in 1965 and a minimum in 1975. This residual can be interpreted in terms of a corresponding non-solar variation of neutral air pressure at 80 km, thus indicating that recent climatic temperature changes in the middle atmosphere are of quasi-cyclic character rather than a monotonous trend.  相似文献   

11.
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector.  相似文献   

12.
对2003年(太阳活动较高年)至2007年(太阳活动低年) CHAMP卫星的热层大气密度观测数据进行了经验正交函数(EOF)分析, 得到了400 km高度上白天平均大气密度ρ的太阳活动周变化与年度变化等不同变化分量. 研究结果表明, ρ受太阳活动影响较大, 其太阳周变化分量与F10.7指数变化之间的相关系数可高达94.5 %; ρ的太阳周变化分量随纬度增加而减小, 且在中高纬地区, 南半球的值明显大于北半球的值, 在低纬地区则出现基本对称的双峰分布, 即赤道质量密度异常(EMA)结构. 在ρ的年变化中, 呈现出明显的季节变化, 即夏季低冬季高; 同时ρ的年变化幅度随太阳活动增加而增强, 随纬度增加而增强. 将本文结果与经验模式NRLMSISE00在观测条件下的输出数据进行对比, 发现两者的太阳周变化与年变化分量基本一致, 但本文观测数据的太阳周成分随纬度变化略小, 年变化幅度略大, 且NRLMSISE00模式不能再现EMA结构. 研究结果对揭示热层气候学变化特征具有重要意义.   相似文献   

13.
The F layer critical frequency (foF2) as measured by Digisondes in the equatorial and low latitude locations in Brazil is analyzed to investigate the seasonal and solar flux controls of the intensity of the equatorial ionization anomaly (EIA) in the equinoctial month of March. The analysis also included the total electron content (TEC) as measured by a GPS receiver operated at the EIA crest location. The foF2 data set covered a period of large solar flux variation from 1996 to 2003, while the GPS TEC data was for a period in 2002–2003 when the solar flux parameter F10.7 underwent large variations, permitting in both cases an examination of the solar flux effects on these parameters. The seasonal variation pattern in TEC shows a maximum in equinoctial months and a minimum in June solstice, with similar variations for foF2. The solar flux dependence of the TEC is a maximum during equinoxes, especially for post-sunset TEC values at times when the latitudinal distribution is controlled by the equatorial evening plasma fountain processes. Significant variations with local time are found in the degree of solar flux dependence for both the TEC and EIA. The EIA intensity shows large dependence on F10.7 during post-sunset to midnight hours. These results are discussed in comparison with their corresponding IRI representations.  相似文献   

14.
We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effect is observed at low-latitudes followed by high and mid-latitudes region. The extent of saturation effect is more pronounced for F10.7 as compared to EUV. A wavelet transform is applied to global and hemispheric electron contents to examine the relative strength of different variations. The semi-annual variations dominate in the northern hemisphere, whereas annual variations dominate in the southern counterpart. The amplitude of annual variations in southern hemisphere is found to be higher than northern counterpart at all latitudes. This asymmetry in the amplitude of annual variation is maximum at low-latitudes, followed by mid and high-latitudes, respectively. The semi-annual variations are in-phase in both hemisphere and follow the solar cycle. The northern hemisphere depicts relatively large amplitude of semi-annual variations and exhibit the maximum effect at high-latitudes.  相似文献   

15.
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies.  相似文献   

16.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

17.
A method of prediction of expected part of global climate change caused by cosmic ray (CR) by forecasting of galactic cosmic ray intensity time variation in near future based on solar activity data prediction and determined parameters of convection-diffusion and drift mechanisms is presented. This gave possibility to make prediction of expected part of global climate change, caused by long-term cosmic ray intensity variation. In this paper, we use the model of cosmic ray modulation in the Heliosphere, which considers a relation between long-term cosmic ray variations with parameters of the solar magnetic field. The later now can be predicted with good accuracy. By using this prediction, the expected cosmic ray variations in the near Earth space also can be estimated with a good accuracy. It is shown that there are two possibilities: (1) to predict cosmic ray intensity for 1–6 months by using a delay of long-term cosmic ray variations relatively to effects of the solar activity and (2) to predict cosmic ray intensity for the next solar cycle. For the second case, the prediction of the global solar magnetic field characteristics is crucial. For both cases, reliable long-term cosmic ray and solar activity data as well as solar magnetic field are necessary. For solar magnetic field, we used results of two magnetographs (from Stanford and Kitt Peak Observatories). The obtained forecasting of long-term cosmic ray intensity variation we use for estimation of the part of global climate change caused by cosmic ray intensity changing (influenced on global cloudiness covering).  相似文献   

18.
Employing Atmsophere Explorer-C measurements made in 1974, just prior to solar minimum, Brace and Theis /1/ demonstrated that a remarkably consistent inverse relationship existed between the electron density Ne and temperature Te in the F-region. In this paper we use later data from AE-C, taken when solar activity was rising (1975–1978), and Dynamics Explorer-2 data taken at solar maximum (1981), to examine how the temperature and density relationship changes with solar activity. We find that the solar maximum Te is a factor of two larger than the solar minimum Te for the same values of Ne. Te does not necessarily increase with solar activity, however, because Ne increases enough to approximately cancel the effect of higher solar extreme ultraviolet heating. We find that the effect of solar activity can be accounted for by a simple function of the F10.7 cm index that multiplies the solar minimum equation of Brace and Theis /1/.  相似文献   

19.
The solar radiation is the fundamental source of energy that drives the Earth’s climate and sustains life. The variability of this output certainly affects our planet. In the last two decades an enormous advance in the understanding of the variability of the solar irradiance has been achieved. Space-based measurements indicate that the total solar irradiance changes at various time scales, from minutes to the solar cycle.Climate models show that total solar irradiance variations can account for a considerable part of the temperature variation of the Earth’s atmosphere in the pre-industrial era. During the 20th century its relative influence on the temperature changes has descended considerably. This means that other sources of solar activity as well as internal and man-made causes are contributing to the Earth’s temperature variability, particularly the former in the 20th century.Some very challenging questions concerning total solar irradiance variations and climate have been raised: are total solar irradiance variations from cycle to cycle well represented by sunspot and facular changes? Does total solar irradiance variations always parallel the solar activity cycle? Is there a long-term variation of the total solar irradiance, and closely related to this, is the total solar irradiance output of the quiet sun constant? If there is not a long-term trend of total solar irradiance variations, then we need amplifying mechanisms of total solar irradiance to account for the good correlations found between total solar irradiance and climate. The latter because the observed total solar irradiance changes are inconsequential when introduced in present climate models.  相似文献   

20.
A drag coefficient (CD) inversion method is introduced to study the variations of the drag coefficient for orbital satellites with spherical geometry. Drag coefficients of the four micro satellites in the Atmospheric Neutral Density Experiment (ANDE) are compiled out with this new method. The Lomb-Scargle Periodgram (LSP) analysis of the four ANDE satellites' CD series has shown that there are obvious 5, 7, 9, and 27 days' period in those data. Interesting results are found through comparing the LSP analysis with series of the daily solar radio flux at 10.7 cm (F10.7 index), the Ap index, and the daily averaged solar wind speed at 1AU. All series in the same time interval have an obvious period of about 27 days, which has already been explained as the association with the 27 days' solar rotation. The oscillating periods less than 27 days are found in series of CD, Ap and solar wind speed at 1AU, e.g., the 5, 7, 9 days period. However, these short periods disappeared in the time series of F10.7 index. The same periodicities of 5, 7, 9 days in Ap and solar wind are presented at the same time interval during the declining phase of solar cycle 23. While in the ascending phase of solar cycle 24, these short oscillations are not so obvious as that in the declining phase of solar cycle 23. These results provide definite evidence that the CD variations with period of 5, 7 and 9 days are produced by a combination of space weather effects caused by the solar wind and geomagnetic activity.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号