首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In a previous paper the authors showed that the aerosol size distribution can be estimated with reasonable accuracy from spectral extinction measurements in a limited spectral region (λ ≤ 1 μm) only. Using the same method it will be discussed if the anticipated WMO turbidity network with four spectral channels has the potential of estimating the aerosol size distribution.  相似文献   

3.
A century has elapsed since the first observation of the polarimetric profile of a line of the solar spectrum. Since then, dramatic progress has been made in the instrumentation, which is now reaching unprecedented levels of sensitivity in the measurement of polarization signals in solar spectral lines. At the same time, the theoretical framework needed for the interpretation of polarimetric observations has steadily evolved from the pioneering methods, based on simple formulae, to the sophisticated structure that is nowadays used with success in the interpretation of solar observations. The present paper is intended to give a historical perspective of the evolution of this research field and of its major achievements, with particular emphasis on the role played by the magnetic field in determining the polarimetric shapes of spectral lines.  相似文献   

4.
The large 3° × 60° fields-of-view of the Solar Mass Ejection Imager (SMEI) instruments are oriented on the stabilized Coriolis satellite to image most of the sky each Sun-synchronous orbit. Besides observing coronal mass ejections, the SMEI mission objective, SMEI also has detected a plethora of Earth-orbiting satellites (resident space objects or RSOs) brighter than ∼8th magnitude at a rate of about 1 per minute. Occasionally, SMEI sees an RSO swarm: a sudden onset of a large number of RSOs, many more than the nominal rate, upto dozens detected in a 4-s frame. These swarms usually last for a few minutes. A sample of six such RSO ensembles is analyzed in this paper in which the distance and the direction of the velocity vector for individual objects are estimated. We present the observational evidence indicating that the swarms must be near-field objects traveling in orbits near that of Coriolis, and that the relatively speeds between the objects and Coriolis are low. Further, analyses indicate that the RSOs are quite close (<20 m) and are generally moving radially away from the satellite. The predicted encounter geometries for Coriolis passing through or near a small debris cloud is, generally, quite inconsistent with the observations. The most likely explanation consistent with the observations is that SMEI is seeing debris being ejected from the Coriolis spacecraft itself. An analysis of distance and brightness for a subset of the RSOs indicates that the median diameter of the debris particles is ∼80 μm.  相似文献   

5.
Aerosol optical depth (AOD) is one of the most important indicators of atmospheric pollution. It can be retrieved from satellite imagery using several established methods, such as the dark dense vegetation method and the deep blue algorithm. All of these methods require estimation of surface reflectance prior to retrieval, and are applicable to a certain pre-designated type of surface cover. Such limitations can be overcome by using a synergetic method of retrieval proposed in this study. This innovative method is based on the fact that the ratio K of surface reflectance at different angles/geometries is independent of wavelength as reported by Flowerdew and Haigh (1995). An atmospheric radiative transfer model was then established and resolved with the assistance of the ratio K obtained from two Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands acquired from the twin satellites of Terra and Aqua whose overpass is separated by three hours. This synergetic method of retrieval was tested with 20 pairs of MODIS images. The retrieved AOD was validated against the ground observed AOD at the Taihu station of the AErosol RObotic NETwork (AERONET). It is found that they are correlated with the observations at a coefficient of 0.828 at 0.47 μm and 0.921 at 0.66 μm wavelengths. The retrieved AOD has a mean relative error of 25.47% at 0.47 μm and 24.3% at 0.66 μm. Of the 20 samples, 15 and 17 fall within two standard error of the line based observed AOD data on the ground at the 0.47 μm and 0.66 μm, respectively. These results indicate that this synergetic method can be used to reliably retrieve AOD from the twin satellites MODIS images, namely Terra and Aqua. It is not necessary to determine surface reflectance first.  相似文献   

6.
Due to the lack of simultaneous high sensitivity/time resolution observations at mm- cm-λ and m-λ a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 MHz, however ii) start times at mm-λ and m-λ are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons.  相似文献   

7.
NASA’s Stardust mission collected dust from the coma of Comet Wild-2 on January 2nd, 2004, by direct capture into aerogel cells that flew through the dust coma at ∼6 km/s. Stardust collected several hundred comet particles >10 μm in size. These comet samples were delivered to Earth on January 15th, 2006. We developed a facility at the National Synchrotron Light Source at Brookhaven National Laboratory (Upton, NY, USA) for the in-situ characterization of ∼10 μm particles collected in aerogel. These analytical instruments allow us to perform extensive chemical, mineralogical, and size-frequency characterization of particles captured in aerogel. These analyses are conducted without any invasive extraction, minimizing the possibility of contamination or particle loss during preparation. This facility was used to determine the chemical composition, the oxidation state, the mineralogy and to provide an indication of the grain size of the Wild-2 particles before they were removed from the aerogel. This information provides a catalog of particle types, allowing a more reasoned allocation of the particles to subsequent investigators based on a relatively detailed knowledge of the chemical composition and mineralogy of each particle. These measurements allowed a comparison of the chemical and mineralogical properties of the Wild-2 particles with other types of extraterrestrial materials, including interplanetary dust particles and meteorites. The success of in-situ analysis for Wild 2 particles demonstrates that synchrotron-based facilities will be important for the analysis of particles collected in aerogel on future earth-orbiting satellites and spacecraft.  相似文献   

8.
We describe the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft. The instrument, which operates in the wavelength range 1150 – 3600 Å, has a spatial resolution of 2–3 arc sec and a spectral resolution of 0.02 Å FWHM in second order. A Gregorian telescope, focal length 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit and allows all four Stokes parameters to be determined. The observing modes include rasters, spectral scans, velocity measurements, and polarimetry. Finally, we present examples of initial observations made since launch.  相似文献   

9.
本文阐述了一种可行的面阵CCD 成象光谱仪的设计。它具有光谱范围宽(0.4μm~1.1μm)、高光谱分辨率(9.2nm)、密集的光谱波段数(76)、较大的地物扫描视场角(30°)等一系列引人注目的优点。  相似文献   

10.
Measurements have been made of the atmospheric scattering in the ultraviolet (λ = 0.31 μm) during the 16 February 1980 solar eclipse rocket campaign. The amplitude of the scattered fluxes as well as the angular distribution could be measured from ground up to an altitude of about 24 km. The Rayleigh scattering component was estimated using standard atmospheric models and the observations have been used to study the scattering due to aerosols at tropospheric and lower stratospheric altitudes.  相似文献   

11.
The Hubble Space Telescope offers enormous advantages to infrared astronomy in certain situations. The advantages of being above the atmosphere include an increase in spatial resolution, a much wider range of wavelengths available, and lower background radiation. Compared to proposed cooled telescopes, HST offers higher spatial resolution and increased collecting area. HST is particularly well suited to observations at wavelengths less than ~5 μm, where the diffraction limit is less than the seeing limit from the ground and thermal emission does not seriously compromise the sensitivity of the detectors. HST is also favorable for observations requiring high spectral resolution at all wavelengths not accessible from the ground.  相似文献   

12.
The nature of PMSE in the VHF and UHF frequency range is considered taking into account the shape of corresponding Doppler spectra. Assuming a turbulence-based model of PMSE it is argued that for cases where a VHF radar detects strong PMSE, the UHF radar could either detect enhanced coherent scattering caused by the same physical process as in the VHF (i.e., turbulence with large charged ice particles), there could be incoherent scattering modified by the charged ice particles, or there could be a mixture of both. In order to distinguish these cases a simple but robust method is introduced to characterize the shape of the Doppler spectra derived from observations at both frequencies. Spectral shapes are quantified with one simple fitting parameter of a generalized fit to the autocorrelation function (=Fourier transform of the Doppler spectrum). This parameter takes a value of 1 for a Lorentzian spectrum indicative of pure incoherent scatter from the D-region, a value of 2 for coherent scatter owing to turbulence, and a value of less than 1 for incoherent scatter modified by the presence of charged aerosol particles. This method is applicable to observations at altitudes between ∼70 and ∼90 km. Simultaneous observations with the EISCAT VHF and UHF radar are presented in which all three cases mentioned above are identified. For the case of incoherent scatter modified by the presence of charged aerosol particles we quantify the radius of the involved ice particles to exceed ∼5 nm. Most importantly, however, for the case where the UHF-signal exceeded the incoherent scatter signal significantly, the spectrum revealed a clear Gaussian shape indicative of a coherent scattering process with identical spectral width as for the VHF-observations. This finding gives strong support that both echoes are created by the same turbulence-based mechanism and not by different mechanisms as speculated by several previous authors.  相似文献   

13.
14.
It is shown that electrodynamic forces play a crucial role in the orbital dynamics of the small Al2O3 particles that are injected into the terrestrial magnetosphere during solid rocket propellent burns. Due to the simplified model that is used to describe the plasma distribution in the magnetosphere, the present results are necessarily preliminary. Even so, it appears that the smallest particles (a = 0.1 μm) will be rapidly eliminated from the magnetosphere. Evaluation of the fate of the somewhat larger (a = 1 μm) particles awaits the construction of a more complete and realistic model of the magnetospheric plasma.  相似文献   

15.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

16.
Particle impacts on spacecraft can cause considerable damage, even leading to complete failure. A theory for the resulting vehicle potential changes and the electromagnetic radiation from impact-induced plasma has been published by Close et al. (2010). Here we compare this theory to impacts registered by the Radio and Plasma Wave Science instrumentation on the Cassini spacecraft. We study both low-velocity (16 km/s) large particles (2.6 μm radius) detected in Saturn’s rings and high-velocity (450 km/s) small particles (1 nm radius) in the solar wind. The agreement with the theory is quite good. We also apply these results to earth orbit and conclude that both Electrostatic Discharge and Electromagnetic Pulse radiation are likely and could lead to spacecraft failure.  相似文献   

17.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

18.
The deleterious effects of accelerated heavy ions as component of the space radiation environment on living cells are of increasing importance for long duration human space flight activities. The most important aspect of such densely ionizing particle radiation is attributed to the type and quality of biological damage induced by them. This issue is addressed by investigating cell inactivation and mutation induction at the Hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) of cultured V79 Chinese hamster cells exposed to densely ionizing radiation (accelerated heavy ions with different LETs from oxygen to gold, specific energies ranging from 1.9 to 69.7 MeV/u, corresponding LET values range from 62 to 13,223 keV/μm) and to sparsely ionizing radiation (200 kV X-rays). 30 spontaneous, 40 X-ray induced and 196 heavy ion induced 6-thioguanine resistant Hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length Hprt cDNA probe isolated from the plasmid pHPT12. Restriction patterns of the spontaneous Hprt mutants were indistinguishable from the wild type pattern, as these mutants probably contain only small deletions or even point mutations in the Hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority of partial or total deletions of the Hprt gene. With constant particle fluence (3 × 106 particles/cm2) the quality of heavy ion induced mutations in the Hprt locus depends on physical parameters of the beam (atomic number, specific energy, LET). This finding suggests a relationship between the type of DNA damage and track structure. The fraction of mutants with severe deletions in the Hprt locus after exposure to oxygen ions increases from 65% at 60 keV/μm up to a maximum (100%) at 300 keV/μm and declines with higher LET values to 75% at 750 keV/μm. With heavier ions (Ca- and Au-ions) and even higher LET-values this mutant fraction decreases to 58% at 13,200 keV/μm. Heavy ion induced DNA break points in the Hprt locus are not randomly distributed.  相似文献   

19.
We are currently developing a polarimeter to study surface physical properties of asteroids. To enhance polarimetric accuracy and observational efficiency, we newly devised the polarimeter whose measurements can provide the two Stokes parameters Q and U, simultaneously. The test-observations of the prototype polarimeter have been carried out in December 2003 and January 2004, mounted on the 101 cm telescope at Bisei Astronomical Observatory, Okayama, Japan. In the observations, unpolarized and polarized standard stars were observed to measure an instrumental polarization and its uncertainty. As a result, an instrumental polarization of 5.06 ± 0.18% has been measured.  相似文献   

20.
The new remote sensing experiment CRISTA-NF (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers) successfully participated in the SCOUT-O3 Tropical Aircraft Campaign in November and December 2005. CRISTA-NF operated aboard the high-altitude research aircraft M-55 Geophysica. Mid-infrared spectra (4–15 μm) were measured in the limb sounding geometry with high spatial resolution (250 m vertical sampling, 5–15 km along track sampling). Measurements were carried out during transfer flights between Oberpfaffenhofen, Germany, and Darwin, Australia, as well as during several local flights near Darwin. Water vapor volume mixing ratios in the upper troposphere and lower stratosphere were derived from the CRISTA-NF radiance measurements by utilizing a rapid radiative transfer forward model and the optimal estimation retrieval approach. CRISTA-NF water vapor measurements below the hygropause have a total retrieval error of 15–40% (i.e. root mean square of accuracy and precision). The systematic terms are dominating in the retrieval error budget. The contributions of a priori information to the retrieval results are less than 5–10%. The vertical resolution of the observations is about 250–500 m when permitted by instrument sampling. In this paper we present first results for three transfer flights of the campaign. Being generally in good agreement with corresponding ECMWF operational analyzes, the CRISTA-NF measurements show significantly higher variability and local structures in the upper tropospheric water vapor distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号