首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Radiative cooling in the mesosphere and lower thermosphere is predominantly from 15-μm emissions of CO2. Above t 120 km, complete NLTE cooling from NO becomes more important. Above 100 km, both the CO2 and the NO cooling are proportional to concentrations of atomic oxygen which are dynamically controlled and poorly characterized by observations. Furthermore, the rate for energy exchange between O and CO2(ν2 = 1) is very poorly known. CO2 is close to LTE throughout the mesosphere, but small departures from LTE between 65 and 80 km may be important for questions of remote sensing. Remote sensing for trace gases, e.g., O3 and H2O, must consider NLTE effects in the mesosphere. A global mean column model for aeronomy processes above 65 km gives a reasonable agreement with observed temperatures, suggesting that radiative balance may be possible without the need for including eddy cooling or gravity wave heating.  相似文献   

2.
The plausible mechanisms of cooling of the nightside Venus' thermosphere are analysed with the aid of the model of the atmospheric heat budget that incorporates, in addition to thermal conduction and IR radiation in the 15 μ band of CO2, heating and cooling due to global scale winds, eddy turbulence, and IR radiation in the rotational bands of H2O and CO, as well as the 63 μ line of atomic oxygen. The H2O mixing ratio and parameters of turbulence required for cooling of the thermosphere down to the observed low temperatures are evaluated.  相似文献   

3.
Large enhancements in the 4.3 micron infrared radiance have been observed since the early 1970's. Auroral photochemical models predict large enhancements in the populations of NO+(ν) and CO2 v3 that radiate in the 4.3 micron region. The strong 4.26 micron band of 12C16O2 is largely self-absorbed in the 90–110 km region with limb-viewing line-of-sight (LOS) optical depths at line center approaching 1000. Line-by-line calculations of the 626 isotope (001-000) transition and weak bands (636, 627, 628, and the 626 011-010 hot band) are necessary in order to calculate accurate limb spectra. The large effect of radiative transfer of the CO2 lines means that their contribution to the limb spectra compared to that of the optically thin NO+(Δν=1) lines is a sensitive function of the geometry of the auroral arc along the LOS.  相似文献   

4.
A preliminary analysis of high-resolution infrared spectra of the aurorally dosed lower thermosphere above Poker Flat Research Range (PFRR), Alaska, obtained by an uplooking cryogenic field-widened interferometer (FWI) is presented. Both models and spectral-fitting/resolution-enhancement methods are used to discuss the behavior of NO, CO, NO+, and CO2 v3 vibrational bands in the high-latitude thermosphere.  相似文献   

5.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA’s Thermosphere–Ionosphere–Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 μm limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.  相似文献   

6.
Four important sampling techniques are briefly reviewed: Selective sampling on impregnated filters for measuring acidic gases, the matrix isolation technique for measuring radicals, whole air grabsampling and whole air cryogenic sampling for measuring stable source gases.Vertical profiles of H2, CH4, CO, N2O, CFCl3 and CF2Cl2 resulting from gas chromatographic analysis of whole air samples collected with a cryogenic sampler are presented. Year-to-year variations are observed for H2, CH4 and N2O above 25 km, while CFCl3 and CF2Cl2 mixing ratios show a noticeable increase between 1977 and 1979 at almost every height level.The CO2 mixing ratio is not constant with height but rather decreases from 332 ppmV at 10 km to 325 ppmV at 30 km.The vertical distribution of methyl chloride is characterized by a rapid decrease from 600 pptV in the troposphere to less than 10 pptV at 32 km in agreement with model results.  相似文献   

7.
Measurements of turbulent energy dissipation rates and eddy diffusion coefficients have been collated, and mean height profiles of fundamental turbulence parameters in the region 80–120 km are presented.  相似文献   

8.
Direct and indirect estimates of turbulence parameters at altitudes 80–120 km are reviewed. It is shown that there are contradictions in data on absolute value, shape, seasonal variations etc. of eddy diffusion coefficient Kt revealed or accepted by different authors. The strongest contradiction is in the views on the seasonal variations of turbulence. Possible explanation may be connected with the correct account for mean motions. Data on turbopause height obtained from neutral composition data (Ar, N2) are discussed. The revealed reverse connection of this height with the temperature at 120 km is discussed in terms of Kt dependence on temperature gradient.  相似文献   

9.
It is often observed that the stratospheric and mesospheric temperature structure undergoes transient disturbances from its averaged steady-state behavior. The causes may be traceable to gravity waves, planetary waves, solar proton and relativistic electron precipitation, etc. We examine the theoretical time behavior of the atmospheric temperature following the cessation of such heating phenomena as it relaxes toward its quiescent steady-state value. We also study the time-dependent response during a model stratospheric-warming/mesospheric-cooling event. In particular, we investigate the roles of eddy heat conduction, non-LTE cooling in the 15μm CO2 band, and an ambient vertical wind, and their relative importance as they depend upon altitude and time, in modifying temperature changes in this region.  相似文献   

10.
Measurements of turbulent energy dissipation rates and eddy diffusion coefficients have been collated, and mean height profiles of fundamental turbulence parameters in the region 80–120 km are presented.  相似文献   

11.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

12.
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km.  相似文献   

13.
The absorption anomaly of Lyman-alpha radiation in satellite occultation experiments is known as the fact that extinction above 100 km is much stronger than absorption by atmospheric O2 alone would explain. Additional absorption by NO or H2O has been suggested but none has been clearly identified so far. The additional absorption occurs predominantly in middle and high latitudes of the winter hemisphere, but has also been found in equatorial latitudes. Recent measurements of NO would explain the Lyman-alpha absorption anomaly. The high densities of the additional Lyman-alpha absorber at lower latitudes could be explained by transport processes through global circulation systems of the higher thermosphere. Structural variations of the neutral gas derived from occultation measurements seem to indicate that thermospheric low pressure systems in mid latitudes modulate the transport of tracer constituents and heat energy from higher latitudes to the equator.  相似文献   

14.
We compute the height profile of the electron production rate q resulting from high energy solar particle flux with spectrum D(E)=KE?n. Cut-offs energies of 10, 20, 30 and 40 MeV and power indices n from 1 to 6 are used. The profiles are normalized for K = 1 particle/(cm2.s.sr.MeV) such that they might be helpful when quantitatively investigating corpuscular effects of proton flares in the height interval 35 to 100 km.  相似文献   

15.
The observation of infrared absorption lines by means of a grille spectrometer on board Spacelab 1 allows the determination of Co2 and CO in the low thermosphere and in the middle atmosphere. Equal abundances of CO and CO2 are found at 115 ± 5 km altitude. CO2 is observed to depart from its homospheric volume mixing ratio near 100 km, dropping by a factor of 10,15 km higher. The CO largest number density is observed near 70 km altitude, close to the H Lyman alpha photoproduction peak.The analysis of one run dedicated to the observation of water vapor shows a middle atmospheric mixing ratio of this species within the limits : 3 to 8 ppmv up to 70 km altitude, with the indication of an increase from 30 to 50 km altitude. The H2O mixing ratio drops very rapidly above 70 km.The comparison of the results from strong and weak H2O and CO2 lines shows the need to refine the line profile model.  相似文献   

16.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

17.
不同上边界条件下的极区电离层数值模拟   总被引:1,自引:0,他引:1  
利用一维自洽的极区电离层模型,研究了沿磁力线方向不同电离层-磁层耦合条件下极区电离层的响应.此模型在110-610km的电离层空间区域内,综合求解描述极区电离层的连续性方程、动量方程和能量方程,以得到电离层数值解.研究发现,上边界条件在200 km以上的高度能显著地影响电离层参量的形态.较高的O+上行速度对应较低的F层峰值和较高的电子温度.不同边界O+上行速度对应的温度高度剖面完全不同.200km以上电子温度高度剖面不但由来自磁层的热流通量所控制,同时还受到场向O+速度的影响.对利用电离层模型研究电离层内部物理过程提出了建议.   相似文献   

18.
Statistical mid-latitude models of altitude distribution of temperature, water vapor, ozone, carbon dioxide and trace gases (CO, CH4, N2O, NO, NO2) are considered. The mean characteristics of altitude profiles of these parameters, as well as their time and space variability, have been taken into account. The statistical regional models were constructed using a temperature-humidy complex. The considered statistical mid-latitude models have been constructed as applied to solutions of the problems on remote sounding of the atmosphere and underlying surface from outer space.  相似文献   

19.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

20.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号