首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   

2.
Based on the author’s experience in ISO TC20/SC14 Working Group 4, this paper discusses the common problems encountered when developing a standard for solar energetic particle (SEP) fluxes. The problem involving the reliability of the distribution function describing the SEP events and the interpolation of this function into the region of not-yet-observed large events are discussed. The problems with describing the fluences of SEPs over a wide range of energy in the form of energetic spectra are analyzed. Requirements for SEP flux models are formulated. The reliability of some SEP flux models is determined by comparing their predictions with the experimental data.  相似文献   

3.
The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes.  相似文献   

4.
Primary photoionisation of major ionospheric constituents is calculated from satellite-borne solar EUV measurements. Number densities of the background atmosphere are taken from the NRLMSISE-00 climatology. From the calculated ionisation rates, a proxy termed EUV-TEC, which is based on the global total ionisation is calculated, and describes the ionospheric response to solar EUV and its variability. The proxy is compared against the global mean ionospheric total electron content (TEC) derived from GPS data. Results show that the EUV-TEC proxy provides a better overall representation of global TEC than conventional solar indices like F10.7 do. The EUV-TEC proxy may be used for scientific research, and to describe the ionospheric effects on radio communication and navigation systems.  相似文献   

5.
The observation of EUV emissions of comet Halley and its plasma-gas environment by means of rocket- or satellite-borne resonance absorption cell spectrophotometer devices is planned. The technical outlay of the payload, the estimated EUV intensities, and the scientific objectives of this mission are presented. Due to complete suppression of the geocoronal He I emissions by He I resonance absorption cells, a quantitative identification of the cometary object in the He I 58.4 nm line is possible, if the He/H abundance ratio in the evaporating cometary matter is higher than 4.0 E-4.  相似文献   

6.
An ultraviolet spectrometer, PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) that is loaded onto the Mercury Planetary Orbiter in the BepiColombo mission is under development. The instrument, basically consisting of two spectrophotometers (EUV: 50–150 nm, FUV: 145–330 nm) and one scanning mirror, aims at measuring emission lines from molecules, atoms and ions present in the tenuous atmosphere of Mercury. The detectors employ microchannel plates as 2-D photon-counting devices. In order to enhance the quantum detection efficiencies, the surface of the top microchannel plates of EUV detector is covered with photocathode. This method enables us to identify weak atmospheric signatures such as neon (73.5 nm) and argon (104.8 nm), which could not be detected with conventional detector systems. This paper presents measurements of the performance characteristics of potassium bromide and esium iodide photocathodes, which have been evaluated for use in the EUV channel.  相似文献   

7.
It is possible to model the time-intensity profile of solar particles expected in space after the occurrence of a significant solar flare on the sun. After the particles are accelerated in the flare process, if conditions are favorable, they may be released into the solar corona and then into space. The heliolongitudinal gradients observed in the inner heliosphere are extremely variable, reflecting the major magnetic structures in the solar corona which extend into space. These magnetic structures control the particle gradients in the inner heliosphere. The most extensive solar particle measurements are those observed by earth-orbiting spacecraft, and forecast and prediction procedures are best for the position of the earth. There is no consensus of how to extend the earth-based models to other locations in space. Local interplanetary conditions and structures exert considerable influence on the time-intensity profiles observed. The interplanetary shock may either reduce or enhance the particle intensity observed at a specific point in space and the observed effects are very dependent on energy.  相似文献   

8.
Using the accumulation of experimental data and theoretical studies conducted on the terrestrial thermosphere since the mid seventies, we have re-evaluated the channels by which solar UV energy is transferred to the atmosphere. As an outcome of this evaluation we have redetermined the solar EUV heating efficiency for the thermosphere and find this to be considerably different from that established in earlier studies. The heating efficiency has strong altitude, solar cycle and diurnal dependencies. The values of this parameter vary from less than 10% to greater than 100%, with peak midday values of 50–55% In recent papers we have presented the results of this new UV heating efficiency determination using a steady state solution of the ionospheric model. In this paper we present the results obtained solving a time dependent model over a diurnal cycle. The time dependent effects are found to be significant, with certain longlived species acting as temporary reservoirs of latent heat that is released to the neutral atmosphere at later times.  相似文献   

9.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   

10.
The present study examines the effects of orbit progression on the exposures within a Space Station Freedom module in a 51.6-degree inclined orbit at 450 km. The storm evolution is modeled after the November 1960 event, and the solar proton flux evolution is taken from the August 1972 solar proton event. The effects of a strong magnetic shock, such as was observed during the October 1989 event, is also modeled. The statistics on hourly average storm fields for the last forty years reveal that the largest geomagnetic storms approach a Dst value of -500 nanotesla at the storm peak. Similarly, one of the largest satellite-measured proton flux (> 10 MeV) for space exposures is the event of August 1972. The effects of orbit progression (advance of the line of nodes) is examined for the above conditions to study the variation of exposures under differing times of occurrence of the solar proton peak intensity, attainment of geomagnetic storm maximum, and the location of the line of nodes of the last geomagnetically protected orbit. The impact of the inherent inhomogeneity of the space station module is examined as a limiting factor on exposure with regard to the need of additional parasitic shielding.  相似文献   

11.
12.
Environmental UV radiation can be quantified using spore dosimetry, which measures the inactivation of repair-deficient Bacillus subtilis spores dried on a membrane filter. The system exhibits highly selective sensitivity to UV radiation, not being affected by various environmental adversities, such as high and low temperature and humidity. Biologically-effective dose rate and cumulative dose of ambient radiation are measurable under various conditions at various places on the earth, including tropical, temperate, and polar sites. Applications to monitor the exposure at the surface of organisms including humans and plants have also been advanced.  相似文献   

13.
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.  相似文献   

14.
This paper summarizes, on one part, the results of a 3-telescope breadboard used to demonstrate the cophasing and imaging capabilities of the Solar Imaging Interferometer, SOLARNET, of the Solar Physics and Interferometry Mission (SPI) and, on the other, possibilities for state-of-the-art recombination optics (molecular binding) and novel delay lines using magnetic bearing to achieve unprecedented cophasing quality and ease of interferometric recombination and imaging.  相似文献   

15.
Radiation characteristics (particle fluxes, doses, and LET spectra) are calculated for spacecraft in the International Space Station orbit. The calculations are made in terms of the dynamic model for galactic cosmic rays and the probabilistic model for solar cosmic rays developed at the Institute of Nuclear Physics of Moscow State University.  相似文献   

16.
North–South asymmetry in the cosmic ray fluxes as resulted from the long-term balloon measurements in the northern and southern polar stratosphere does not agree with that found from the neutron monitor data. In order to reveal possible sources of the observed asymmetry, selected interplanetary parameters were examined. North–South asymmetry relative to the heliospheric neutral sheet was considered for solar wind velocity, plasma density and some other solar plasma parameters. It is shown that North–South asymmetry of the solar wind velocity and plasma density depends on the Earth’s heliolatitude and the phase of the 11-year solar activity cycle. This may be relevant to the results of cosmic ray measurements in the stratosphere.  相似文献   

17.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

18.
The solar wind fills the heliosphere and is the background medium in which coronal mass ejections propagate. A realistic modelling of the solar wind is therefore essential for space weather research and for reliable predictions. Although the solar wind is highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the global, average solar wind characteristics rather well. The modern computer power makes it possible to perform full three dimensional (3D) simulations in domains extending beyond the Earth’s orbit, to include observationally driven boundary conditions, and to implement even more realistic physics in the equations. In general, MHD models for the solar wind often make use of additional source and sink terms in order to mimic the observed solar wind parameters and/or they hide the not-explicitly modelled physical processes in a reduced or variable adiabatic index. Even the models that try to take as much as possible physics into account, still need additional source terms and fine tuning of the parameters in order to produce realistic results. In this paper we present a new and simple polytropic model for the solar wind, incorporating data from the ACE spacecraft to set the model parameters. This approach allows to reproduce the different types of solar wind, where the simulated plasma variables are in good correspondence with the observed solar wind plasma near 1 AU.  相似文献   

19.
Dynamic processes in the interplanetary space have been investigated using time variations in time parameters of the cosmic-ray rigidity spectrum. Change of heliosphere electromagnetic characteristics has been found out to precede sporadic phenomena on the Sun. In particular, it is shown that sporadic phenomena are followed by generation of local polarization electric fields, decrease of the magnetic-field strength in small-scale heliospheric structures, and increase of the potential difference between the pole and the plane of the ecliptic. These features allow prediction of solar proton events in advance (from several hours to several tens of hours) with a high degree of confirmation.  相似文献   

20.
In this paper we analyse from a new point of view the energy deposition due to precipitated protons when they interact with the atmospheric components. The method described presents a different way of calculating the proton interaction and allows us to obtain the production rate and fluxes of the generated electrons as function of height and energy. Also the model gives the possibility of estimating independently the effects of protons and resulting secondary and tertiary electrons in protons events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号