首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG Hα, STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.  相似文献   

2.
本文利用A-E卫星在太阳活动21周峰年间观测到的EUV辐射资料,高层大气成分的吸收截面,以及MSIS-86热层大气模式,研究了EUV辐射在大气中的吸收过程;在透射比为1/e和0.1/100时分别计算了透射高度随波长及太阳活动的变化。在波长范围50—1050内对37个波段分别求出了透射高度随太阳天顶角的变化。结果表明,当太阳活动增强时各波段的透射高度均升高,而且透射比越大则透射高度随太阳活动的变化也越剧烈。当透射比为一定时,太阳天顶角越大则透射高度随太阳活动的变化也越大。除此之外还存在一个相反效应,即太阳活动会使Chapman函数变小,这反过来又促使透射高度降低。这两种效应的综合作用结果可较好地解释某些电离层观测中的日没效应。  相似文献   

3.
4.
Remote optical observations of comets provide information only along the whole line of sight and require some assumptions to be interpreted. Due to the advent of cometary space missions, a two-step strategy has been defined to derive without any assumption spatial distribution and physical properties of dust by in-situ optical observations. First, an Optical Probe Experiment, suitable for a fast fly-by, should provide passive in-situ measurements in the direction of the approaching (or receding) comet near encounter; by suitably differencing such observations, the brightness and polarization per unit volume can be recovered along the trajectory of the spacecraft. Secondly, a Light Scattering Dust Analyzer, suitable for a rendez-vous mission, should permit the determination of the scattering properties of individual particles. Both experiments also provide a connecting link between non-optical in-situ measurements (from mass spectrometers or impact detectors) and remote optical observations.  相似文献   

5.
Comparisons of various available empirical models of electron temperature are made with actual measurements from incoherent scatter radar and rocket and satellite probes, during low solar activity period. The models compared are those of Pandey et al. (1983), Brace and Theis (1978), IRI (1979) and Bilitza (1983). It is found that our model and the Brace and Theis model are closer to actual measurements than the IRI and Bilitza models.  相似文献   

6.
GIRL is a liquid helium cooled 50 cm telescope equipped with four focal plane instruments dedicated to astronomical and aeronomical observations. These instruments, a detector array, a photopolarimeter, an Ebert-Fastie-spectrometer and a Michelson-interferometer make up an “infrared observatory” having high sensitivity and high spectral and spatial resolution. Si:Ga-, Si:Sb-, Si:As-, Si:P-, Ge:Be-, Ge:Cu- and Ge:Ga-detectors with NEP-values as low as 3 10?17 W Hz?12 have been tested and will be used to cover the wavelength range 3…120 μm. A full size “thermal model” of the GIRL cryostat containing 300 1 of superfluid helium at 1.6 K has been tested at the industrial prime contractor MBB; results of these tests will be presented in a following paper by F. Dahl et al. Several new techniques for cold telescopes are used in GIRL, for instance a glass ceramics primary mirror, a low power chopping secondary and an active helium phase separator. The scientific objectives include studies of star formation regions and active galaxies as well as measurements of spurious gases in the earth atmosphere. GIRL will be pointed by the Instrument Pointing System (IPS) and is scheduled to fly on Spacelab in 1986/87.  相似文献   

7.
The observed magnetic field configuration in the Venus magnetosheath contains information about the solar wind mass-loading processes occurring as a result of the extension of the neutral atmosphere into the magnetosheath. In this paper, magnetic field signatures of various mass-loading processes are discussed and experimental results from the Pioneer Venus Orbiter magnetometer experiment are examined for evidence of these signatures. The data suggest that the ?VXB acceleration process, stochastic pickup of ionospheric ions, and JXB force “scavenging” at the ionopause all occur at various times.  相似文献   

8.
The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs.  相似文献   

9.
Since its launch in 1978 the International Ultraviolet Explorer (IUE) satellite observatory has been used to record ultraviolet spectra of nearly two dozen comets. These observations have been applied principally to studies of the composition, chemistry and evolution of the gaseous coma and more recently, with the substantially increased data base, to comparative analyses. The observations of Comets Bowell (1982 I) and Cernis (1983?) at a heliocentric distance of ≈ 3.4 AU show these two comets to be virtually identical and pose problems for water ice vaporization models. The most significant recent result from IUE was the discovery of S2 in the Earth-approaching comet IRAS-Araki-Alcock (1983d) and the use of the S2 emission as a monitor of short-term variations in cometary activity. In early 1984, periodic comet Encke was observed for the second time by IUE, this time post-perihelion.  相似文献   

10.
ISEE-3 observations of a long-lasting low-energy proton intensity increase during the 25 September 1978 shock event are presented as an example for interplanetary particle acceleration in association with shock waves. The observations are discussed in the light of current models for particle acceleration. The particular shape of the time intensity behaviour of the particle intensity increase, the existence of a shock spike and the observed particle distributions indicate that the particles are accelerated at the shock by the induced electric field E = ?1cV × B.  相似文献   

11.
A comprehensive model is developed using the updated rate coefficients and transition probabilities to study the redline dayglow emission of atomic oxygen. The solar EUV fluxes are obtained from the Solar Irradiance Platform (SIP), and incorporated into the model successfully. All possible production and loss mechanisms of O(1D) are considered in the model. The neutral number densities and temperature are adopted from the NRLMSISE-00 model. The ion and electron densities, and electron temperature are adopted from the IRI-07 model. The model results are validated with the help of measurements as provided by the Wind Imaging Interferometer (WINDII) on board Upper Atmosphere Research Satellite (UARS). The present results are found in better agreement with the measurements in comparison with the earlier model. The measured volume emission rate profiles are reproduced quite well by the present model. The model results show that the updated rate coefficients and transition probabilities are quite consistent and may be used in the aeronomical studies.  相似文献   

12.
13.
Observations of cool stars with the Einstein Observatory (HEAO-2) have brought about a fundamental change in our knowledge and understanding of stellar coronae. The existence of X-ray emission from stars throughout the H-R diagram, the wide range of X-ray luminosity within a given spectral and luminosity class, and the strong correlation of X-ray luminosity with stellar age and rotation are among the more significant Einstein results. These results are strong evidence for the influence of stellar dynamo action on the formation and heating of stellar coronae. A discussion of relevant consortium and guest observations will be given. The Hyades cluster, in particular, will serve as an example to demonstrate the usefulness of X-ray observations in the study of stellar activity and coronal evolution.  相似文献   

14.
The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated.Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the two satellites. A general solution for accurate height computation depends on precise navigation of the two satellites. Validation of the geosynchronous satellite stereo using high altitude mountain lakes and vertically pointing aircraft lidar leads to a height accuracy estimate of ± 500 m for typical clouds which have been studied. Applications of the satellite stereo include: 1) cloud top and base height measurements, 2) cloud-wind height assignment, 3) vertical motion estimates for convective clouds (Mack et al. [13], [14]), 4) temperature vs. height measurements when stereo is used together with infrared observations and 5) cloud emissivity measurements when stereo, infrared and temperature sounding are used together (see Szejwach et al. [15]).When true satellite stereo image pairs are not available, synthetic stereo may be generated. The combination of multispectral satellite data using computer produced stereo image pairs is a dramatic example of synthetic stereoscopic display. The classic case uses the combination of infrared and visible data as first demonstrated by Pichel et al. [16]. Hasler et at. [17], Mosher and Young [18] and Lorenz [19], have expanded this concept to display many channels of data from various radiometers as well as real and simulated data fields.A future system of stereoscopic satellites would be comprised of both low orbiters (as suggested by Lorenz and Schmidt [20], [19]) and a global system of geosynchronous satellites. The low earth orbiters would provide stereo coverage day and night and include the poles. An optimum global system of stereoscopic geosynchronous satellites would require international standarization of scan rate and direction, and scan times (synchronization) and resolution of at least 1 km in all imaging channels. A stereoscopic satellite system as suggested here would make an extremely important contribution to the understanding and prediction of the atmosphere.  相似文献   

15.
We describe the progress which has been made in constructing a new type of X-ray telescope, which operates at normal incidence in the soft X-ray region by the use of multilayer coatings. The principles involved in state-of-the-art multilayer technology and some recent high-resolution imaging results are discussed. A rocket payload incorporating a multilayer X-ray mirror is presently being constructed. It is of Ritchey-Chretien design and the expected spatial resolution is 14arcsec. The scientific program for solar coronal studies and future instrumental developments are also discussed.  相似文献   

16.
Stellar occultations provide a useful means of measuring the trace gas composition of the Earth's mesosphere with a sensitivity of order one part per billion. The operational details will differ from those of other astronomical observations by ST, because of the difficulties in guiding near the Earth's limb. Two specific trace gases of interest to atmospheric studies, Cl and ClO, are discussed in this paper.  相似文献   

17.
This paper examines high resolution (ΔE/E = 0.15) photoelectron energy spectra from 10 eV to 1 keV, created by solar irradiances between 1.2 and 120 nm. The observations were made from the FAST satellite at ∼3000 km, equatorward of the auroral oval for the July–August, 2002 solar rotation. These data are compared with the solar irradiance observed by the Solar EUV Experiment (SEE) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and fluxes calculated using the Field Line Interhemispheric Plasma (FLIP) code. The 41 eV photoelectron flux, which corresponds to solar EUV fluxes near 20 nm, shows a clear solar rotation variation in very good agreement with the EUV flux measurements. This offers the possibility that the 41 eV photoelectron flux could be used as a check on measured solar EUV fluxes near 20 nm. Because of unexpected noise, the solar rotation signal is not evident in the integral photoelectron flux between 156 and 1000 eV corresponding to EUV wavelengths between 0.1 and 7 nm measured by the SEE instrument. Examination of daily averaged photoelectron fluxes at energies between 25 and 500 eV show significant changes in the photoelectron spectra in response X and M class flares. The intensity of photoelectrons produced in this energy region is primarily due to two very narrow EUV wavelength regions at 2.3 and 3 nm driving Auger photoionization in O at 500 eV and N2 at ∼360 eV. Comparison of calculated and daily averaged electron fluxes shows that the HEUVAC model solar spectrum used in the FLIP code does not reproduce the observed variations in photoelectron intensity. In principle, the 21 discrete photoelectron energy channels could be used to improve the reliability of the solar EUV fluxes at 2.3 and 3 nm inferred from broad band observations. In practice, orbital biases in the way the data were accumulated and/or noise signals arising from natural and anthropogenic longitudinally restricted sources of ionization complicate the application of this technique.  相似文献   

18.
Absolute solar UV spectra were obtained with a 14m spectrometer on a balloon flight from Palestine, Texas on September 23, 1981. This balloon reached a float altitude of 39 km at solar noon. The ozone density profiles derived from these spectra are discussed. The measurements are compared with data obtained from the same calibrated instrument flown in 1976 at solar minimum.  相似文献   

19.
A broad theme emerging from IUE and Einstein observations of cool stars is that magnetic fields control the structure and energy balance of the outer atmospheres of these stars. I summarize the phenomena associated with magnetic fields in the Sun and show that similar phenomena occur in cool luminous stars. High dispersion spectra are providing unique information concerning densities, atmospheric extension, and emission line widths. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in β Dra (G2 Ib) and perhaps other stars, which I interpret as indicating downflows in closed magnetic flux tubes as are seen in the solar flux tubes above sunspots. Finally, I classify the G and K giants and supergiants into three groups — active stars, quiet stars, and hybrid stars — depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.  相似文献   

20.
The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO–EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号